Pseudozyma aphidis Induces Salicylic-Acid-Independent Resistance to Clavibacter michiganensis in Tomato Plants

Author:

Barda Omer1,Shalev Or1,Alster Shanee1,Buxdorf Kobi1,Gafni Aviva1,Levy Maggie1

Affiliation:

1. Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel

Abstract

The ability of plant pathogens to rapidly develop resistance to commonly used pesticides challenges efforts to maximize crop production. Fungal biocontrol agents have become an important alternative to chemical fungicides as a result of environmental concerns regarding conventional pesticides, including resistance issues. The complex mode of action of biocontrol agents reduces the likelihood that pathogens will develop resistance to them. We recently isolated a unique, biologically active isolate of the epiphytic fungus Pseudozyma aphidis. We show that the extracellular metabolites secreted by our P. aphidis isolate can inhibit Xanthomonas campestris pv. vesicatoria, X. campestris pv. campestris, Pseudomonas syringae pv. tomato, Erwinia amylovora, Clavibacter michiganensis, and Agrobacterium tumefaciens in vitro. Moreover, application of Pseudozyma aphidis spores on tomato plants in the greenhouse significantly reduced (by 60%) the incidence of bacterial wilt and canker disease caused by C. michiganensis subsp. michiganensis on those plants as well as disease severity by 35%. Furthermore, infected plants treated with P. aphidis were 25% taller than control infected plants. We found that P. aphidis activates PR1a—and other pathogenesis-related genes in tomato plants—and can trigger an induced-resistance response against C. michiganensis that proceeds in a salicylic-acid-independent manner, as shown using NahG-transgenic tomato plants.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3