Estimating the Production and Release of Ascospores from a Field-Scale Source of Fusarium graminearum Inoculum

Author:

Prussin Aaron J.1,Szanyi Nicole A.1,Welling Patricia I.1,Ross Shane D.2,Schmale David G.1

Affiliation:

1. Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA 24061-0390

2. Department of Engineering Science and Mechanics, Virginia Tech, Blacksburg, VA 24061-0219

Abstract

Fusarium head blight (FHB) is a devastating disease of wheat and barley caused by the fungus Fusarium graminearum. The fungus produces spores that may be transported over long distances in the atmosphere. In order to predict the atmospheric transport of F. graminearum, the production and release of ascospores must be known. We conducted a series of laboratory and field experiments to estimate perithecia production and ascospore release from a field-scale source of F. graminearum inoculum. Perithecia were generated on artificial (carrot agar) and natural (corn stalk) substrates. Artificial substrates produced 15 ± 0.4 perithecia/cm2, and natural substrates produced 44 ± 2 perithecia/cm2. Eighty perithecia were excised from both substrate types and allowed to release ascospores every 24 h. Perithecia generated from artificial and natural substrates released a mean of 104 ± 5 and 276 ± 16 ascospores over 10 days, respectively. A volumetric spore trap was placed inside a 1-acre clonal source of inoculum in 2011 and 2012. Results indicated that ascospores were released predominantly during the night (1900 to 0700). Estimates of ascospore production for our field-scale sources of inoculum were approximately 400 million ascospores/day for 10 days. Mathematical models can use estimates of ascospore production to assist in predicting the transport of F. graminearum.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3