Serological and Molecular Identification of Chickpea chlorotic stunt virus from Chickpea in Iran

Author:

Bananej K.1,Vahdat A.1,Menzel W.2,Vetten H. J.3

Affiliation:

1. Plant Virus Research Department, Iranian Research Institute of Plant Protection, 19395-1454, Tehran, Iran

2. DSMZ Plant Virus Collection, Inhoffenstrasse 7B, 38124 Braunschweig, Germany

3. Julius Kuehn Institute, Federal Research Centre for Cultivated Plants, Institute of Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104 Braunschweig, Germany

Abstract

During a survey of chickpea (Cicer arietinum L.) crops in western Iran in July 2009, leaf samples from yellow and stunted plants were collected from fields in the provinces of Kermanshah (n = 30) and Lorestan (n = 16). Symptoms suggested infections by luteoviruses, such as viruses of the Beet western yellows virus (BWYV) subgroup (e.g., Turnip yellows virus [TuYV]) (4) and Chickpea chlorotic stunt virus (CpCSV), a virus first described from Ethiopia (1) and recently reported from other countries of West Asia and North Africa (2). All 46 samples were analyzed by triple-antibody sandwich (TAS)-ELISA (3) using the luteovirus-specific monoclonal antibody (MAb) B-2-5G4 (1), a mixture of three MAbs (1-1G5, -3H4, and -4B12) to an Ethiopian (Eth) isolate of CpCSV (1), and six individual MAbs (5-1F10, -2B8, -3D5, -5B8, -6F11, and 6-4E10) to a CpCSV isolate from Syria (Sy) (2) in combination with a mixture of polyclonal antibodies to CpCSV and BWYV for plate coating. CpCSV-Eth and -Sy were used as positive controls. Six of the sixteen Lorestan samples and two of the thirty Kermanshah samples reacted with MAb B-2-5-G4, indicating infections with a luteovirus. While none of the 46 samples reacted with the mixture of the CpCSV-Eth specific MAbs, two (Lorestan No. 25 and Kermanshah No. 31) of the eight MAb B-2-5-G4-positive samples reacted strongly with each of the six individual MAbs to CpCSV-Sy. Since this indicated the presence of a serotype II isolate of CpCSV in these two chickpea samples from Iran, we tried to confirm this by reverse transcriptase (RT)-PCR. TRI-Reagent (Sigma, St. Louis, MO) was used for total RNA extraction from samples Nos. 25 and 31. RT-PCR was carried out using the primers 5′-CAC GTG AGA TCA ATA GTC AAT GAA TAC GGT CG-3′ (sense) and 5′-TTT GTA ATT ACC AAY ATT CCA-3′ (antisense) derived from the CpCSV coat protein (CP) gene and 5′ end of ORF5, the readthrough domain (RTD), respectively. In RT-PCR experiments, no amplification was observed from healthy plant extracts, but chickpea samples Nos. 25 and 31 yielded amplicons of ~1,100 bp, which were used for cloning and sequencing. The sequences of the complete CP gene and 5′ end of ORF5 (RTD) from the two samples were determined and deposited in GenBank (GU930837 and GU930838). Sequence analysis revealed that the two Iranian isolates were most similar to each other, sharing CP nucleotide and amino acid (aa) sequence identities of 97.8 and 99.1%, respectively. They differed from each other only in 3 of the 200 aa positions of their CP sequences and were indistinguishable in the 128 N-terminal aa positions of their RTD sequences. When using DNAMAN for phylogenetic analysis, they clustered with serogroup-II isolates of CpCSV from Egypt, Morocco, and Syria (2), with which they were most closely related (approximately 98% in CP aa sequence). While the two Iranian CpCSV isolates differed by approximately 10% in CP aa sequences from serotype-I isolates of CpCSV, they differed strikingly (by ~27%) in RTD aa sequences from CpCSV-Eth, a serotype-I isolate and the only CpCSV isolate for which RTD sequences are available. To our knowledge, this is the first report of the occurrence of CpCSV in Iran. The virus can cause yellowing and stunting of chickpea similar to symptoms caused by other viruses reported from this crop. References: (1) A. D. Abraham et al. Phytopathology 96:437, 2006. (2) A. D. Abraham et al. Arch. Virol 154:791, 2009. (3) A. Franz et al. Ann. Appl. Biol. 128:255, 1996. (4) K. M. Makkouk et al. J. Plant Dis. Prot. 110:157, 2003.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Chickpea chlorotic dwarf virus;CABI Compendium;2022-01-07

2. Chickpea chlorotic stunt virus;CABI Compendium;2022-01-07

3. Chickpea chlorotic stunt virus: a threat to cool-season food legumes;Archives of Virology;2021-11-02

4. Cicer arietinum (Chickpea);Encyclopedia of Plant Viruses and Viroids;2019

5. Vector-Borne Viruses of Pulse Crops, With a Particular Emphasis on North American Cropping System;Annals of the Entomological Society of America;2018-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3