Wind Speed Effects on the Quantity of Xanthomonas citri subsp. citri Dispersed Downwind from Canopies of Grapefruit Trees Infected with Citrus Canker

Author:

Bock C. H.1,Graham J. H.1,Gottwald T. R.2,Cook A. Z.3,Parker P. E.3

Affiliation:

1. University of Florida, CREC, 700 Experiment Station Rd., Lake Alfred, FL 33850

2. USDA-ARS-USHRL, 2001 S. Rock Rd., Ft. Pierce, FL 34945

3. USDA-APHIS-PPQ, Moore Air Base, Edinburg, TX 78539

Abstract

The epidemic of citrus canker (Xanthomonas citri subsp. citri) in Florida continues to expand since termination of the eradication program in 2006. Storms are known to be associated with disease spread, but little information exists on the interaction of fundamental physical and biological processes involved in dispersal of this bacterium. To investigate the role of wind speed in dispersal, wind/rain events were simulated using a fan to generate wind up to 19 m·s-1 and spray nozzles to simulate rain. Funnels at ground level and panels at 1.3 m height and distances up to 5 m downwind collected wind-driven splash. Greater wind speeds consistently dispersed more bacteria, measured by concentration (colony forming units [CFU] ml-1) or number sampled (bacteria flux density [BFD] = bacteria cm-2 min-1), from the canopy in the splash. The CFU ml-1 of X. citri subsp. citri collected by panels 1 m downwind at the highest wind speed was up to 41-fold greater than that collected at the lowest wind speed. BFD at the highest wind speed was up to 884-fold higher than that collected at the lowest wind speed. Both panels at distances >1 m and funnels at distances >0 m collected many-fold more X. citri subsp. citri at higher wind speeds compared to no wind (up to 1.4 × 103-fold greater CFU ml-1 and 1.8 × 105-fold the BFD). The resulting relationship between wind speed up to 19 m·s-1 and the mean CFU ml-1 collected by panel collectors downwind was linear and highly significant. Likewise, the mean CFU ml-1 collected from the funnel collectors had a linear relationship with wind speed. The relationship between wind speed and BFD collected by panels was generally similar to that described for CFU ml-1 of X. citri subsp. citri collected. However, BFD collected by funnels was too inconsistent to determine a meaningful relationship with increasing wind speed. The quantity of bacteria collected by panels declined with distance, and the relationship was described by an inverse power model (R2 = 0.94 to 1.00). At higher wind speeds, more bacteria were dispersed to all distances. Windborne inoculum in splash in subtropical wet environments is likely to be epidemiologically significant, as both rain intensity and high wind speed can interact to provide conditions conducive for dispersing large quantities of bacteria from canker-infected citrus trees. Disease and crop management aimed at reducing sources of inoculum and wind speeds in a grove should help minimize disease spread by windborne inoculum.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3