Rhizoctonia Web Blight Development on Container-Grown Azalea in Relation to Time and Environmental Factors

Author:

Copes Warren E.1,Scherm Harald2

Affiliation:

1. USDA-ARS Thad Cochran Southern Horticulture Laboratory, P.O. Box 287, Poplarville, MS 39470

2. Department of Plant Pathology, University of Georgia, Athens, GA 30602

Abstract

Rhizoctonia web blight, caused by binucleate Rhizoctonia spp., is an annual problem in the southern United States on container-grown azaleas (Rhododendron spp.) that receive daily irrigation. Disease progress was assessed weekly from mid-May to mid-September on nursery-grown plants at three locations in Mississippi and Alabama in 2006, 2007, and 2008. Disease onset, defined as the appearance of blighted leaves at the exterior canopy of at least one plant, occurred on average on 20 July, and calendar date was a more precise predictor of disease onset than several combined time–weather variables. Disease progress curves exhibited weekly fluctuations around a typically exponential increase in the mean number of symptomatic leaves per plant until early to mid-September, after which web blight severity leveled off or declined due to disease-induced leaf dehiscence and the appearance of new, asymptomatic leaves. Based on the relative increase in the log-transformed number of infected leaves per plant, weekly assessment periods were classified as having slow (≤0%), intermediate (>0 to <10%), or rapid (≥10% increase) disease progress. Three-day moving averages (MA) of various weather variables were calculated, and lagged values (by 5 days) of the MA were used in an attempt to predict disease progress as slow, intermediate, or rapid. Of the periods assessed as having slow disease progress in the 2006–2007 data set (model development data), 90.6% (29 of 32) met at least one of the following heuristically derived criteria for the lagged MA: min. temperature < 20.0°C, max. temperature > 35.0°C, avg. vapor pressure deficit < 2.50 hPa, or day of the year > 240 (28 August). One or more of these same criteria were met in 5 of 16 (31.2%) assessment periods with rapid disease progress, indicating that periods with slow versus rapid disease progression could be distinguished reasonably well based on weather. Results were similar for the 2008 validation data. However, weather variables were not useful in separating periods with either slow or rapid disease progress from those having intermediate progress. Instead, weather variables were most useful when used in a negative-prognosis approach to predict disease progression as being “not rapid” (which includes slow and intermediate periods) or “not slow” (including intermediate and rapid periods). The data set was further analyzed using Classification and Regression Tree (CART) analysis to relate weekly disease progress periods to weather variables. The resulting CART model agreed with the heuristic approach in that temperature variables were more prominent than moisture variables in classifying disease progress periods. With both approaches, satisfactory accuracy was accomplished only with negative-prognoses that classified disease progress periods as not rapid or not slow based on temperature and moisture limits.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3