Assessment of the Process of Movement of Xylella fastidiosa Within Susceptible and Resistant Grape Cultivars

Author:

Baccari C.,Lindow S. E.

Abstract

To better understand the processes contributing to symptoms and resistance to Pierce's disease of grape, we examined the movement and multiplication of a green fluorescent protein-marked strain of Xylella fastidiosa in the stems and petioles of Cabernet Sauvignon, Chenin Blanc, Roucaneuf, and Tampa grape cultivars that differ in their susceptibility to this disease. X. fastidiosa achieved much lower population sizes and colonized fewer xylem vessels in the stem of resistant cultivars compared with more susceptible cultivars. In contrast, X. fastidiosa achieved similarly high population sizes and colonized a similar proportion of the vessels in petioles of susceptible and resistant cultivars, suggesting that, compared with the stem, X. fastidiosa is relatively unrestricted in its movement and growth within the petiole. There was not a direct relationship between the population size of X. fastidiosa in the stem and the proportion of vessels colonized; a much higher population size of the pathogen was observed in susceptible cultivars than expected based on the proportion of vessels colonized. The high population sizes of X. fastidiosa in stems of susceptible genotypes were associated with both a high number of infected vessels and a much higher extent of colonization of those vessels that become infested than in more resistant cultivars. The formation of large cellular aggregates in vessels is not required for X. fastidiosa to move laterally in the stem to adjacent vessels because most vessels harbored only small assemblages, especially in resistant cultivars such as Roucaneuf, in which some intervessel movement was detected. Resistance to Pierce's disease is apparently not due to inhibitory compounds that circulate in the xylem because they might be expected to operate similarly in all tissues.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3