The Current Epidemic of the Barley Pathogen Ramularia collo-cygni Derives from a Population Expansion and Shows Global Admixture

Author:

Stam Remco1ORCID,Sghyer Hind1,Tellier Aurélien2,Hess Michael1,Hückelhoven Ralph1

Affiliation:

1. Chair of Phytopathology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany

2. Section of Population Genetics, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany

Abstract

Ramularia leaf spot is becoming an ever-increasing problem in main barley-growing regions since the 1980s, causing up to 70% yield loss in extreme cases. Yet, the causal agent Ramularia collo-cygni remains poorly studied. The diversity of the pathogen in the field thus far remains unknown. Furthermore, it is unknown to what extent the pathogen has a sexual reproductive cycle. The teleomorph of R. collo-cygni has not been observed. To study the genetic diversity of R. collo-cygni and get more insights in its biology, we sequenced the genomes of 19 R. collo-cygni isolates from multiple geographic locations and diverse hosts. Nucleotide polymorphism analyses of all isolates shows that R. collo-cygni is genetically diverse worldwide, with little geographic or host specific differentiation. Next, we used two different methods to detect signals of recombination in our sample set. Both methods find putative recombination events, which indicate that sexual reproduction happens or has happened in the global R. collo-cygni population. Lastly, we used these data on recombination to perform historic population size analyses. These suggest that the effective population size of R. collo-cygni decreased during the domestication of barley and subsequently grew with the rise of agriculture. Our findings deepen our understanding of R. collo-cygni biology and can help us to understand the current epidemic. We discuss how our findings support possible global spread through seed transfer, and we highlight how recombination, clonal spreading, and lack of host specificity could amplify global epidemics of this increasingly important disease and suggest specific approaches to combat the pathogen.

Funder

Bavarian State Ministry of Food, Agriculture and Forestry

Bavarian State Ministry of the Environment and Consumer Protection

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3