Twenty Years of Leptosphaeria maculans Population Survey in France Suggests Pyramiding Rlm3 and Rlm7 in Rapeseed Is a Risky Resistance Management Strategy

Author:

Balesdent Marie-Hélène1ORCID,Gautier Angélique1,Plissonneau Clémence1,Le Meur Loïc2,Loiseau Alizée3,Leflon Martine4,Carpezat Julien4,Pinochet Xavier4,Rouxel Thierry1

Affiliation:

1. Université Paris-Saclay, INRAE, UR Bioger, Avenue Lucien Brétignières, F-78850 Thiverval-Grignon, France

2. Union Nationale des Producteurs de Pommes de Terre (UNPT), 43-45 rue de Naples F-75008, Paris, France

3. Agrosolutions, Village by CA Reims, 17 rond-point de l'Europe, 51430 Bezannes, France

4. Terres Inovia, Avenue Lucien Brétignières, F-78850 Thiverval-Grignon, France

Abstract

Strategies for plant resistance gene deployment aim to preserve their durability to highly adaptable fungal pathogens. While the pyramiding of resistance genes is often proposed as an effective way to increase their durability, molecular mechanisms by which the pathogen can overcome the resistance also are important aspects to take into account. Here, we report a counterexample where pyramiding of two resistance genes of Brassica napus, Rlm3 and Rlm7, matching the Leptosphaeria maculans avirulence genes AvrLm3 and AvrLm4-7, respectively, favored the selection of double-virulent isolates. We previously demonstrated that the presence of a functional AvrLm4-7 gene in an isolate masks the Rlm3-AvrLm3 recognition. Rlm7 was massively deployed in France since 2004. L. maculans populations were surveyed on a large scale (>7,600 isolates) over a period of 20 years, and resistance gene deployment at the regional scale was determined. Mutations in isolates overcoming both resistance genes were analyzed. All data indicated that the simultaneous success of Rlm7, the deployment of varieties pyramiding Rlm3 and Rlm7, along with the decrease in areas cultivated with Rlm3 only, contributed to the success of virulent isolates toward Rlm7, and more recently to both Rlm3 and Rlm7. Experimental field assays proved that resistance gene alternation was a better strategy compared with pyramiding in this context. Our study also illustrated an unusually high sequence diversification of AvrLm3 and AvrLm4-7 under such a selection pressure, and identified a few regions of the AvrLm4-7 protein involved in both its recognition by Rlm7 and in its AvrLm3-Rlm3 masking ability. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .

Funder

Agence Nationale de la Recherche

INRAE

Ministère de l'Agriculture et de l'Alimentation

Office National de l'Eau et des Milieux Aquatiques

SOFIPROTEOL

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3