Localized Genetic and Phenotypic Diversity of Xanthomonas translucens Associated With Bacterial Leaf Streak on Wheat and Barley in Minnesota

Author:

Curland Rebecca D.1,Gao Liangliang2,Hirsch Cory D.1ORCID,Ishimaru Carol A.1ORCID

Affiliation:

1. Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108

2. Department of Plant Pathology, Kansas State University, Manhattan, KS 66506

Abstract

Bacterial leaf streak (BLS) of wheat and barley has been a disease of increasing concern in the Upper Midwest over the past decade. In this study, intra- and interfield genetic and pathogenic diversity of bacteria causing BLS in Minnesota was evaluated. In 2015, 89 strains were isolated from 100 leaf samples collected from two wheat and two barley fields naturally infected with BLS. Virulence assays and multilocus sequence alignments of four housekeeping genes supported pathovar identifications. All wheat strains were pathogenic on wheat and barley and belonged to the same lineage as the Xanthomonas translucens pv. undulosa-type strain. All barley strains were pathogenic on barley but not on wheat. Three lineages of barley strains were detected. The frequency and number of sequence types of each pathovar varied within and between fields. A significant population variance was detected between populations of X. translucens pv. undulosa collected from different wheat fields. Population stratification of X. translucens pv. translucens was not detected. Significant differences in virulence were detected among three dominant sequence types of X. translucens pv. undulosa but not those of X. translucens pv. translucens. Field trials with wheat and barley plants inoculated with strains of known sequence type and virulence did not detect significant race structures within either pathovar. Knowledge of virulence, sequence types, and population structures of X. translucens on wheat and barley can support studies on plant–bacterial interactions and breeding for BLS disease resistance.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3