Affiliation:
1. Long Island Horticultural Research and Extension Center, Cornell University, Riverhead, NY
2. Department of Plant Pathology and Crop Physiology, Louisiana State University AgCenter, Baton Rouge
3. Cornell Cooperative Extension, Monroe County, Rochester, NY
4. USDA/APHIS/PPQ, Beltsville, MD
5. School of Engineering of Lullier, University of Applied Sciences of Western Switzerland, 1254 Jussy, Switzerland
Abstract
In May 2005, two commercial greenhouse flower growers, one in Louisiana (LA) and one in New York (NY), submitted coleus, Solenostemon scutellarioides (L.) Codd, plants for diagnosis after observing stunted growth, inward curling and twisting of leaves, and leaf abscission on multiple cultivars. Downy mildew-like growth was observable with hand lens or a microscope on the abaxial leaf surfaces of affected plants. Irregular necrotic spotting was present on some, but not all, plants on which sporulation was evident. Microscopic examination of LA material led to tentative identification of the pathogen as Peronospora lamii A. Braun (2). The pale brown conidia ranged from 17 to 26 × 15 to 26 μm (average 23 × 19 μm). Conidiophores ranged from 345 to 561 × 9 to 15 μm. No oospores were found. Additional coleus plants with downy mildew were subsequently found in three retail nurseries in LA in early summer. In NY, infected coleus plants were observed in landscapes in Farmington, Rochester, Ithaca, and in two commercial greenhouses between August and October 2005. NY samples sent to the USDA/APHIS in Beltsville, MD were examined, and the fungus was found to have morphology consistent with P. lamii. Two pathogenicity trials were conducted in NY. Conidia were rubbed from an infected coleus leaf onto the leaves of six healthy potted coleus plants of five cultivars and two basil plants that were placed in a shaded plastic tent in the greenhouse where temperatures ranged from 17 to 22°C. A household humidifier was used to supply mist inside the tent for 5 h per day. Six noninoculated plants of each coleus cultivar and two basil plants, placed in the same environment, served as controls. Downy mildew sporulation and some curling and twisting of leaves were observed 14 days after inoculation on all inoculated plants for three of the five cultivars (Florida Rustic Orange, Aurora Peach, and Aurora Mocha). Cvs. Florida Sun Rose and Lava showed no symptoms or signs of downy mildew. An irregularly shaped brown lesion developed on one inoculated basil leaf, and downy mildew sporulation was evident on the abaxial surface 35 days after inoculation. All noninoculated control plants remained disease free. In a second trial, conidia were rinsed from infected coleus leaves and sprayed onto the abaxial leaf surfaces of three coleus cv. Aurora Mocha plants. Three noninoculated plants served as controls and all were placed in a humidity tent. Leaf twisting and downy mildew sporulation were observed 13 days later on all inoculated plants, and control plants showed no sporulation or symptoms. A downy mildew causing disease of greenhouse-grown basil in Europe, originally identified as P. lamii on the basis of morphology, has recently been reported to be taxonomically distinguishable from P. lamii when tested by molecular methods (1). ITS sequences of coleus downy mildew from NY and LA were nearly identical (99% homology) to those of basil downy mildew from Switzerland and Italy (1). To our knowledge, this is the first report of downy mildew occurrence on coleus. References: (1) L. Belbahri et al. Mycol. Res. 109:1276, 2005. (2) S. M. Francis. Peronospora lamii. Descriptions of Pathogenic Fungi and Bacteria. No. 688. CMI, Kew, England, 1981.
Subject
Plant Science,Agronomy and Crop Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献