GCPDFFNet: Small Object Detection for Rice Blast Recognition

Author:

Xie Dejin12,Ye Wei12ORCID,Pan Yining1,Wang Jiaoyu3,Qiu Haiping3,Wang Hongkai4,Li Zhaoxing2,Chen Tianhao1

Affiliation:

1. College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China

2. Huzhou Institute of Zhejiang University, Huzhou 313000, China

3. Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China

4. Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China

Abstract

Early detection of rice blast disease is pivotal to ensure rice yield. We collected in situ images of rice blast and constructed a rice blast dataset based on variations in lesion shape, size, and color. Given that rice blast lesions are small and typically exhibit round, oval, and fusiform shapes, we proposed a small object detection model named GCPDFFNet (global context-based parallel differentiation feature fusion network) for rice blast recognition. The GCPDFFNet model has three global context feature extraction modules and two parallel differentiation feature fusion modules. The global context modules are employed to focus on the lesion areas; the parallel differentiation feature fusion modules are used to enhance the recognition effect of small-sized lesions. In addition, we proposed the SCYLLA normalized Wasserstein distance loss function, specifically designed to accelerate model convergence and improve the detection accuracy of rice blast disease. Comparative experiments were conducted on the rice blast dataset to evaluate the performance of the model. The proposed GCPDFFNet model outperformed the baseline network CenterNet, with a significant increase in mean average precision from 83.6 to 95.4% on the rice blast test set while maintaining a satisfactory frames per second drop from 147.9 to 122.1. Our results suggest that the GCPDFFNet model can accurately detect in situ rice blast disease while ensuring the inference speed meets the real-time requirements.

Funder

Zhejiang Science and Technology Major Program on Agriculture New Variety Breeding

Agricultural “Double Strong” Special Project of the Huzhou Science and Technology Bureau of Zhejiang Province

Zhejiang Provincial Key Research and Development Program

Publisher

Scientific Societies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3