Knock-Down of Heat-Shock Protein 90 and Isocitrate Lyase Gene Expression Reduced Root-Knot Nematode Reproduction

Author:

Lourenço-Tessutti Isabela Tristan1,Souza Junior José Dijair Antonino1,Martins-de-Sa Diogo1,Viana Antônio Américo Barbosa1,Carneiro Regina Maria Dechechi Gomes1,Togawa Roberto Coiti1,de Almeida-Engler Janice1,Batista João Aguiar Nogueira1,Silva Maria Cristina Mattar1,Fragoso Rodrigo Rocha1,Grossi-de-Sa Maria Fatima1

Affiliation:

1. First, second, third, fourth, fifth, sixth, eighth, ninth, and eleventh authors: Embrapa Genetic Resources and Biotechnology, Laboratory of Molecular Plant−Pest Interaction, Brasília, DF, Brazil; first, second, and third authors: University of Brasília, Department of Cell Biology, Graduate Program in Molecular Biology, Brasília, DF, Brazil; seventh author: Institut National de la Recherche Agronomique, Sophia-Antipolis, France; eighth author: Federal University of Minas Gerais, Botany Department, Belo...

Abstract

Crop losses caused by nematode infections are estimated to be valued at USD 157 billion per year. Meloidogyne incognita, a root-knot nematode (RKN), is considered to be one of the most important plant pathogens due to its worldwide distribution and the austere damage it can cause to a large variety of agronomically important crops. RNA interference (RNAi), a gene silencing process, has proven to be a valuable biotechnology alternative method for RKN control. In this study, the RNAi approach was applied, using fragments of M. incognita genes that encode for two essential molecules, heat-shock protein 90 (HSP90) and isocitrate lyase (ICL). Plant-mediated RNAi of these genes led to a significant level of resistance against M. incognita in the transgenic Nicotiana tabacum plants. Bioassays of plants expressing HSP90 dsRNA demonstrated a delay in gall formation and up to 46% reduction in eggs compared with wild-type plants. A reduction in the level of HSP90 transcripts was observed in recovered eggs from plants expressing dsRNA, indicating that gene silencing persisted and was passed along to first progeny. The ICL knock-down had no clear effect on gall formation but resulted in up to 77% reduction in egg oviposition compared with wild-type plants. Our data suggest that both genes may be involved in RKN development and reproduction. Thus, in this paper, we describe essential candidate genes that could be applied to generate genetically modified crops, using the RNAi strategy to control RKN parasitism.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3