Guilt by Association: DNA Barcoding-Based Identification of Potential Plant Hosts of Phytoplasmas from Their Insect Carriers

Author:

Inaba Junichi1ORCID,Shao Jonathan2,Trivellone Valeria3,Zhao Yan1,Dietrich Christopher H.3,Bottner-Parker Kristi D.1,Ivanauskas Algirdas1,Wei Wei1ORCID

Affiliation:

1. Beltsville Agricultural Research Center, Molecular Plant Pathology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705

2. Statistics Group, NEA Bioinformatics, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705

3. Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL 61820

Abstract

Phytoplasmas are small phloem-restricted and insect-transmissible bacteria that infect many plant species, including important crops and ornamental plants, causing severe economic losses. Our previous studies screened phytoplasmas in hundreds of leafhoppers collected from natural habitats worldwide and identified multiple genetically different phytoplasmas in seven leafhopper species (potential insect vectors). As an initial step toward determining the impact of these phytoplasmas on the ecosystem, ribulose 1,5-biphosphate carboxylase large subunit ( rbcL), a commonly used plant DNA barcoding marker, was employed to identify the plant species that the phytoplasma-harboring leafhoppers feed on. The DNA of 17 individual leafhoppers was PCR amplified using universal rbcL primers. PCR products were cloned, and five clones per amplicon were randomly chosen for Sanger sequencing. Moreover, Illumina high-throughput sequencing on selected PCR products was conducted and confirmed no missing targets in Sanger sequencing. The nucleotide BLAST results revealed 14 plant species, including six well-known plant hosts of phytoplasmas such as tomato, alfalfa, and maize. The remaining species have not been documented as phytoplasma hosts, expanding our knowledge of potential plant hosts. Notably, the DNA of tomato and maize (apparently cultivated in well-managed croplands) was detected in some phytoplasma-harboring leafhopper species sampled in non-crop lands, suggesting the spillover/spillback risk of phytoplasma strains between crop and non-crop areas. Furthermore, our results indicate that barcoding (or metabarcoding) is a valuable tool to study the three-way interactions among phytoplasmas, plant hosts, and vectors. The findings contribute to a better understanding of phytoplasma host range, host shift, and disease epidemiology.

Funder

U.S. Department of Agriculture−Agricultural Research Service

Swiss National Science Foundation

U.S. National Science Foundation

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3