Expression of the Potato Late Blight Resistance Gene Rpi-phu1 and Phytophthora infestans Effectors in the Compatible and Incompatible Interactions in Potato

Author:

Stefańczyk Emil1,Sobkowiak Sylwester1,Brylińska Marta1,Śliwka Jadwiga1ORCID

Affiliation:

1. Plant Breeding and Acclimatization Institute–National Research Institute, Młochów Research Centre, Platanowa 19, 05-831, Młochów, Poland.

Abstract

This study describes late blight resistance of potato breeding lines resulting from crosses between cultivar ‘Sárpo Mira’ and Rpi-phu1 gene donors. The progeny is investigated for the presence of Rpi-Smira1 and Rpi-phu1 resistance (R) genes. Interestingly, in detached-leaflet tests, plants with both R genes withstood the infection of the Phytophthora infestans isolate virulent to each gene separately, due to either interaction of these genes or the presence of additional resistance loci. The interaction was studied further in three chosen breeding lines on the transcriptional level. The Rpi-phu1 expression, measured over 5 days, revealed different patterns depending on the outcome of the interaction with P. infestans: it increased in infected plants whereas it remained low and stable when infection was unsuccessful. The expression patterns of P. infestans effectors Avr-vnt1, AvrSmira1, and Avr8, recognized by the Rpi-phu1, Rpi-Smira1, and Rpi-Smira2 genes, respectively, were evaluated in the same experimental setup. This is the first report that the Avr-vnt1 effector expression is not switched off permanently in virulent isolates to avoid recognition by an R protein but can reappear in a postbiotrophic phase and is present constantly when infecting plants without the corresponding R gene. Both a plant and a pathogen can react to the other interacting side by changing the transcript accumulation of R genes or effectors.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3