Molecular Characterization of International Collections of the Wheat Stripe Rust Pathogen Puccinia striiformis f. sp. tritici Reveals High Diversity and Intercontinental Migration

Author:

Sharma-Poudyal Dipak1,Bai Qing1,Wan Anmin1,Wang Meinan1,See Deven12,Chen Xianming12ORCID

Affiliation:

1. Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430

2. Wheat Health, Genetics, and Quality Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Pullman, WA 99164-6430

Abstract

Puccinia striiformis f. sp. tritici causes stripe rust (yellow rust), one of the most important wheat diseases worldwide. To understand the genetic variation of the pathogen in a global scale, 283 P. striiformis f. sp. tritici isolates collected from 16 countries in eight geographic regions were genotyped using 24 codominant simple sequence repeat markers. The overall collection had a high level of genetic diversity, and the diversity levels in the Asian populations were generally higher than those of the other regions. Heterozygosity of isolates ranged from 0 to 75%, with an average of 46%. Mean heterozygosity in individual countries ranged from 34 to 59%. A total of 265 multilocus genotypes (MLGs) were detected, which were classified into eight molecular groups. Some of the molecular groups were present in all geographic regions. Moreover, many isolates from different regions were found to be identical or very closely related MLGs. Analysis of molecular variance revealed high variation within countries and intermediate variation between countries, but it revealed low and insignificant variation among geographic regions. Pairwise comparisons of regional populations detected considerable effective migrants and only low to moderate levels of differentiation. The molecular genotypes had a moderate level of correlation with the virulence phenotypes, and some of the molecular/virulence groups contained isolates from different continents. The results indicate tremendous migrations of P. striiformis f. sp. tritici and warrant the development of management strategies considering the global pathogen population.

Funder

USDA-ARS

Washington Grain Commission

Agricultural Research Center HATCH project

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3