The Fusarium graminearum Transporters Abc1 and Abc6 Are Important for Xenobiotic Resistance, Trichothecene Accumulation, and Virulence to Wheat

Author:

O'Mara Sean P.1ORCID,Broz Karen2,Schwister Erin M.2,Singh Lovepreet1,Dong Yanhong3,Elmore J. Mitch23,Kistler H. Corby23ORCID

Affiliation:

1. Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108

2. U.S. Department of Agriculture-Agricultural Research Service Cereal Disease Laboratory, St. Paul, MN 55108

3. Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108

Abstract

The plant pathogenic fungus Fusarium graminearum is the causal agent of Fusarium head blight (FHB) disease on small-grain cereals. F. graminearum produces trichothecene mycotoxins such as deoxynivalenol (DON) that are required for full virulence. DON must be exported outside the cell to cause FHB disease, a process that may require the involvement of membrane-bound transporters. In this study, we show that the deletion of membrane-bound transporters results in reduced DON accumulation as well as reduced FHB symptoms on wheat. Deletion of the ATP-binding cassette (ABC) transporter gene Abc1 results in the greatest reduction in DON accumulation and virulence. Deletion of another ABC transporter gene, Abc6, also reduces FHB symptoms to a lesser degree. Combining deletions fails to reduce DON accumulation or virulence in an additive fashion, even when a ∆ abc1 deletion is included. Heterologous expression of F. graminearum transporters in a DON-sensitive strain of yeast confirms Abc1 as a major DON resistance mechanism; furthermore, it suggests that Abc1 is directly participating in DON transport rather than facilitating DON transport though other means. Yeast expression further indicates that multiple transporters, including Abc1, play an important role in resistance to the wheat phytoalexin 2-benzoxazolinone (BOA) and other xenobiotics. Thus, Abc1 may contribute to virulence on wheat both by facilitating export of DON and by providing resistance to the wheat phytoalexin BOA. This research provides useful information that may aid in designing novel management techniques of FHB or other destructive plant diseases.

Funder

Agricultural Research Service

National Institute of Food and Agriculture

United States Wheat and Barley Scab Initiative

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3