atrB-Associated Fludioxonil Resistance in Botrytis fragariae Not Linked to Mutations in Transcription Factor mrr1

Author:

Hu Meng-Jun1,Cosseboom Scott1,Schnabel Guido2ORCID

Affiliation:

1. Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD; and

2. Department of Agricultural and Environmental Sciences, Clemson University, Clemson, SC

Abstract

Resistance to fludioxonil in Botrytis cinerea and B. fragariae was previously found to be linked to either overexpression of the drug efflux pump atrB activated by mutations in transcription factor mrr1 or to mutations in the osmoregulation gene os1. In the present study, isolates of B. cinerea, Botrytis group S, or B. fragariae collected from strawberry fields in the United States were resistant to fludioxonil with half-maximal effective concentration values ranging from 0.04 to 0.43 µg/ml for B. cinerea, 0.03 to 1.03 µg/ml for Botrytis group S, and 0.28 to 3.48 µg/ml for B. fragariae. Analyses of mrr1 sequences revealed various mutations linked to fludioxonil resistance in B. cinerea and Botrytis group S isolates. However, no mutations in mrr1 correlated with atrB overexpression-mediated resistance in B. fragariae isolates. Neither nucleotide variations in the 1,370-bp upstream region of atrB nor increased atrB copy numbers could explain the atrB overexpression in these B. fragariae isolates. Mutations in os1 conferred resistance to iprodione in B. cinerea and Botrytis group S isolates; none correlated with resistance to fludioxonil in B. fragariae. In contrast to European isolates, U.S. B. fragariae isolates contained a 3-bp insertion in the coding region of os1. These isolates were more sensitive to osmotic stress but it is unclear whether the insertion is responsible for this phenotype. Our findings suggest that atrB overexpression-associated fludioxonil resistance is an across-species mechanism of resistance to fludioxonil that can be induced by mutations in mrr1 and other, still-unknown mechanisms.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3