Introgression of rpg4/Rpg5 Into Barley Germplasm Provides Insights Into the Genetics of Resistance to Puccinia graminis f. sp. tritici Race TTKSK and Resources for Developing Resistant Cultivars

Author:

Hernandez Javier1ORCID,Steffenson Brian J.2,Filichkin Tanya1,Fisk Scott P.1,Helgerson Laura1,Meints Brigid1,Vining Kelly J.3ORCID,Marshall David4,del Blanco Alicia5,Chen Xianming6,Hayes Patrick M.1

Affiliation:

1. Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331

2. Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108

3. Department of Horticulture, Oregon State University, Corvallis, OR 97331

4. U.S. Department of Agriculture Agricultural Research Service, Raleigh, NC 27695

5. Department of Plant Sciences, University of California, Davis, CA 95616

6. U.S. Department of Agriculture Agricultural Research Service Wheat Health, Genetics, and Quality Research Unit and Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430

Abstract

Stem rust (incited by Puccinia graminis f. sp. tritici) is a devastating disease of wheat and barley in many production areas. The widely virulent African P. graminis f. sp. tritici race TTKSK is of particular concern, because most cultivars are susceptible. To prepare for the possible arrival of race TTKSK in North America, we crossed a range of barley germplasm—representing different growth habits and end uses—with donors of stem rust resistance genes Rpg1 and rpg4/Rpg5. The former confers resistance to prevalent races of P. graminis f. sp. tritici in North America, and the latter confers resistance to TTKSK and other closely related races from Africa. We produced doubled haploids from these crosses and determined their allele type at the Rpg loci and haplotype at 7,864 single-nucleotide polymorphism loci. The doubled haploids were phenotyped for TTKSK resistance at the seedling stage. Integration of genotype and phenotype data revealed that (i) Rpg1 was not associated with TTKSK resistance, (ii) rpg4/Rpg5 was necessary but was not sufficient for resistance, and (iii) specific haplotypes at two quantitative trait loci were required for rpg4/Rpg5 to confer resistance to TTKSK. To confirm whether lines found resistant to TTKSK at the seedling resistance were also resistant at the adult plant stage, a subset of doubled haploids was evaluated in Kenya. Additionally, adult plant resistance to leaf rust and stripe rust (incited by Puccinia hordei and Puccinia striiformis f. sp. hordei, respectively) was also assessed on the doubled haploids in field trials at three locations in the United States over a 2-year period. Doubled haploids were identified with adult plant resistance to all three rusts, and this germplasm is available to the research and breeding communities.

Funder

Agricultural Research Service

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3