Remarkably High Internal Transcribed Spacer Haplotype Diversity of the Fungal Select Agent Coniothyrium glycines Discovered Throughout Its Range in Sub-Saharan Africa

Author:

Bach Rachel A. Koch1ORCID,Murithi Harun M.23,Slocum Clint R.1,Coyne Danny3,Clough Steven J.45ORCID

Affiliation:

1. U.S. Department of Agriculture, Agricultural Research Service, Foreign Disease-Weed Science Research Unit, Fort Detrick, MD, U.S.A.

2. Agricultural Research Service Research Participation Program through the Oak Ridge Institute for Science and Education, Oak Ridge, TN, U.S.A.

3. International Institute of Tropical Agriculture, Nairobi, Kenya

4. U.S. Department of Agriculture, Agricultural Research Service, Soybean/Maize Germplasm, Pathology, and Genetics Research Unit, Urbana, IL, U.S.A.

5. University of Illinois, Department of Crop Sciences, Urbana, IL, U.S.A.

Abstract

Red leaf blotch of soybean, caused by the fungus Coniothyrium glycines, is a foliar disease characterized by blotching, necrosis, and defoliation that has only been reported from Africa. The species is listed as a Select Agent by the Federal Select Agent Program due to its potentially devastating impacts to soybean production should it spread to the United States. Despite its potential import, very few isolates are available for study. Herein, we obtained 96 new C. glycines isolates from six soybean-producing countries throughout sub-Saharan Africa. Along with 12 previously collected ones, we sequenced each at the internal transcribed spacer (ITS) region. Between all isolates, we identified a total of 28 single-nucleotide polymorphisms and 23 haplotypes. One hypothesis to explain the tremendous diversity uncovered at the ITS—which is generally conserved within a species—is that our current species concept of C. glycines is too broad and that there may be multiple species that cause red leaf blotch. Zambia contained the highest haplotype diversity, a significant fraction of which remains unsampled. Most haplotypes were specific to a single country, except for two, which were found in Zambia and either neighboring Mozambique or Zimbabwe. This geographic specificity indicates that the ITS region may be useful for identifying source populations or routes of transmission should this pathogen spread beyond Africa. The observed geographic partitioning of this pathogen is likely the result of millions of years of replication on little-studied native hosts, given that soybean has only been cultivated in Africa since the early 1900s.

Publisher

Scientific Societies

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3