Insights Into the Roles of Two Genes of the Histidine Biosynthesis Operon in Pathogenicity of Xanthomonas oryzae pv. oryzicola

Author:

Su Panpan1,Song Zhiwei1,Wu Guichun1,Zhao Yancun1,Zhang Yuqiang1,Wang Bo1,Qian Guoliang1,Fu Zheng Qing1,Liu Fengquan1

Affiliation:

1. First, second, fourth, and ninth authors: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China; third, fifth, sixth, seventh, and ninth authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China; and eighth author: Department of Biological Sciences, University of South Carolina, Columbia.

Abstract

Xanthomonas oryzae pv. oryzicola is an X. oryzae pathovar that causes bacterial leaf streak in rice. In this study, we performed functional characterization of a nine-gene his operon in X. oryzae pv. oryzicola. Sequence analysis indicates that this operon is highly conserved in Xanthomonas spp. Auxotrophic assays confirmed that the his operon was involved in histidine biosynthesis. We found that two genes within this operon, trpR and hisB, were required for virulence and bacterial growth in planta. Further research revealed that trpR and hisB play different roles in X. oryzae pv. oryzicola. The trpR acts as a transcriptional repressor and could negatively regulate the expression of hisG, -D, -C, -B, -H, -A, and -F. hisB, which encodes a bifunctional enzyme implicated in histidine biosynthesis, was shown to be required for xanthomonadin production in X. oryzae pv. oryzicola. The disruption of hisB reduced the transcriptional expression of five known shikimate pathway-related genes xanB2, aroE, aroA, aroC, and aroK. We found that the his operon in X. oryzae pv. oryzicola is not involved in hypersensitive response in nonhost tobacco plants. Collectively, our results revealed that two genes in histidine biosynthesis operon play an important role in the pathogenicity of X. oryzae pv. oryzicola Rs105.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3