Biological Control of Botrytis cinerea: Interactions with Native Vineyard Yeasts from Washington State

Author:

Wang Xuefei1,Glawe Dean A.1,Kramer Elizabeth1,Weller David1,Okubara Patricia A.1

Affiliation:

1. First, second, and third authors: Department of Plant Pathology, Washington State University, Pullman 99164-6430; and fourth and fifth authors: United States Department of Agriculture–Agricultural Research Service Wheat Health, Genetics and Quality Research Unit, Pullman, WA 99164-6430.

Abstract

Native yeasts are of increasing interest to researchers, grape growers, and vintners because of their potential for biocontrol activity and their contributions to the aroma, flavor, and mouthfeel qualities of wines. To assess biocontrol activity, we tested 11 yeasts from Washington vineyards, representing isolates of Candida saitoana, Curvibasidium pallidicorallinum, Metschnikowia chrysoperlae, M. pulcherrima, Meyerozyma guilliermondii, Saccharomyces cerevisiae, and Wickerhamomyces anomalus, for ability to colonize Thompson Seedless grape berries, inhibit the growth of Botrytis cinerea in vitro, and suppress disease symptoms on isolated berries. The yeast-like fungus Aureobasidium pullulans was also included based on its known biocontrol activity against B. cinerea in studies on apple and grape. All yeast strains multiplied rapidly in grape berries and reached densities of over log 6 cells per wound as early as 2 days after inoculation with 200 cells. One of the Botrytis isolates used in this study was much less virulent than the others and was provisionally identified as B. prunorum based on multilocus sequence analysis. Suppression of the growth of B. cinerea isolates 111bb, 207a, 207cb, and 407cb occurred on berries treated with A. pullulans P01A006, Metschnikowia chrysoperlae P34A004 and P40A002, M. pulcherrima P01A016 and P01C004, Meyerozyma guilliermondii P34D003, and S. cerevisiae HNN11516. Inhibition of Botrytis isolates by the yeast strains was more common on berries than in vitro, suggesting the possibility that niche competition was a more likely biocontrol mechanism than antibiosis in planta. Metabolic profiling of yeast strains and B. cinerea isolates using Biolog YT plates revealed seven distinct metabolic groups. Furthermore, the yeast strains showed partial to complete tolerance to the commonly used fungicides fluopyram, triflumizole, metrafenone, pyraclostrobin, and boscalid. Implications of these findings for field deployment of native Washington yeasts as biocontrol agents against B. cinerea are discussed.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3