How Knowledge of Pathogen Population Biology Informs Management of Septoria Tritici Blotch

Author:

McDonald Bruce A.1,Mundt Christopher C.1

Affiliation:

1. First author: Plant Pathology, Institute of Integrative Biology, ETH Zurich, CH-8092 Zurich, Switzerland; and second author: Department of Botany and Plant Pathology, Oregon State University, Corvallis 97331.

Abstract

Zymoseptoria tritici (previously Mycosphaerella graminicola) causes Septoria tritici blotch (STB) on wheat. The population biology of Z. tritici has been exceptionally well characterized as a result of intensive studies conducted over nearly 30 years. These studies provided important insights into the biology, epidemiology and evolutionary history of Z. tritici that will prove useful for management of STB. The well-documented, rapid adaptation of Z. tritici populations to fungicide applications and deployment of wheat cultivars carrying both major gene and quantitative resistance reflects the high evolutionary potential predicted by the large effective population size, high degree of gene flow and high levels of recombination found in field populations of Z. tritici globally. QST studies that assessed the global diversity for several important quantitative traits confirmed the adaptive potential of field populations and laid the groundwork for quantitative trait loci (QTL) mapping studies. QTL mapping elucidated the genetic architecture of each trait and led to identification of candidate genes affecting fungicide resistance, thermal adaptation, virulence, and host specialization. The insights that emerged through these analyses of Z. tritici population biology can now be used to generate actionable disease management strategies aimed at sustainably reducing losses due to STB. The high evolutionary potential found in field populations of Z. tritici requires deployment of a corresponding dynamically diverse set of control measures that integrate cultural, chemical, biological and resistance breeding strategies. In this review, we describe and prioritize STB control strategies based on current knowledge of Z. tritici population biology and propose a future research agenda oriented toward long-term STB management.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3