A Plant Nutrient- and Microbial Protein-Based Resistance Inducer Elicits Wheat Cultivar-Dependent Resistance Against Zymoseptoria tritici

Author:

Ors M.12ORCID,Randoux B.1,Siah A.3,Couleaud G.2,Maumené C.2,Sahmer K.4,Reignault P.1ORCID,Halama P.3,Selim S.5ORCID

Affiliation:

1. Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), Université du Littoral Côte d’Opale, CS 80699, F-62228, Calais Cedex, France

2. Arvalis-Institut du Végétal, Station expérimentale de Boigneville, F-91720 Boigneville, France

3. Institut Charles Viollette (EA 7394), Institut Supérieur d’Agriculture, Université de Lille, 48 Boulevard Vauban, F-59046 Lille Cedex, France

4. Equipe Sols et Environnement, Laboratoire Génie Civil et géoEnvironnement (EA 4515), Institut Supérieur d’Agriculture, 48 Boulevard Vauban, F-59046 Lille Cedex, France

5. AGHYLE, SFR Condorcet 3417, Institut Polytechnique UniLaSalle, 19 Rue Pierre Waguet, BP 30313, F-60026 Beauvais Cedex, France

Abstract

The induction of plant defense mechanisms by resistance inducers is an attractive and innovative alternative to reduce the use of fungicides on wheat against Zymoseptoria tritici, the responsible agent of Septoria tritici blotch (STB). Under controlled conditions, we investigated the resistance induction in three wheat cultivars with different susceptible levels to STB as a response to a treatment with a sulfur, manganese sulfate, and protein-based resistance inducer (NECTAR Céréales). While no direct antigermination effect of the product was observed in planta, more than 50% reduction of both symptoms and sporulation were recorded on the three tested cultivars. However, an impact of the wheat genotype on resistance induction was highlighted, which affects host penetration, cell colonization, and the production of cell-wall degrading enzymes by the fungus. Moreover, in the most susceptible cultivar Alixan, the product upregulated POX2, PAL, PR1, and GLUC gene expression in both noninoculated and inoculated plants and CHIT2 in noninoculated plants only. In contrast, defense responses induced in Altigo, the most resistant cultivar, seem to be more specifically mediated by the phenylpropanoid pathway in noninoculated as well as inoculated plants, since PAL and CHS were most specifically upregulated in this cultivar. In Premio, the moderate resistant cultivar, NECTAR Céréales elicits mainly the octadecanoid pathway, via LOX and AOS induction in noninoculated plants. We concluded that this complex resistance-inducing product protects wheat against Z. tritici by stimulating the cultivar-dependent plant defense mechanisms.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3