Identification and Functional Analysis of Tomato MicroRNAs in the Biocontrol Bacterium Pseudomonas putida Induced Plant Resistance to Meloidogyne incognita

Author:

Yang Fan12,Ding Ling12,Zhao Dan3,Fan Haiyan12,Zhu Xiaofeng1,Wang Yuanyuan4,Liu Xiaoyu5,Duan Yuxi1,Chen Lijie12ORCID

Affiliation:

1. College of Plant Protection, Shenyang Agricultural University, Dongling Road 120, Shenyang 110866, China

2. Key Laboratory of Protected Horticulture, Shenyang Agricultural University, Ministry of Education, Dongling Road 120, Shenyang 110866, China

3. College of Plant Protection, Jilin Agricultural University, Xincheng Road 2888, Jilin 130118, China

4. College of Biotechnology, Shenyang Agricultural University, Dongling Road 120, Shenyang 110866, China

5. College of Science, Shenyang Agricultural University, Dongling Road 120, Shenyang 110866, China

Abstract

Root-knot nematodes (RKNs, Meloidogyne spp.) seriously damage tomato production worldwide, and biocontrol bacteria can induce tomato immunity to RKNs. Our previous studies have revealed that Pseudomonas putida strain Sneb821 can trigger tomato immunity against M. incognita and that several long noncoding RNAs and microRNAs (miRNAs) are involved in this process. However, the molecular functions of the miRNAs in tomato immune responses remain unclear. In this study, deep small RNA sequencing identified 78 differentially expressed miRNAs in tomato plants inoculated with Sneb821 and M. incognita relative to plants inoculated with M. incognita alone; 38 miRNAs were upregulated, and 40 miRNAs were downregulated. The expression levels of six known miRNAs and five novel miRNAs were validated using RT-qPCR assays. These included Sly-miR482d-3p, Sly-miR156e-5p, Sly-miR319a, novel_miR_116, novel_miR_121, and novel_miR_221, which were downregulated, and Sly-miR390a-3p, Sly-miR394-3p, Sly-miR396a-3p, novel_miR_215, and novel_miR_83, which were upregulated in plants treated with Sneb821 and M. incognita. In addition, Sly-miR482d was functionally characterized through gene silencing and overexpression of its target gene NBS-LRR ( Solyc05g009750.1) in tomato and by challenging the plants with M. incognita inoculation. The number of second-stage juveniles (J2) inside roots and induced galls were significantly decreased in both Sly-miR482d-silenced plants and Solyc05g009750.1 overexpressing plants, whereas the activity of superoxide dismutase, peroxidase, and hydrogen peroxide content were significantly increased. The results suggest that Sneb821 could inhibit Sly-miR482d expression and thus regulate tomato immune responses against M. incognita infestation. This study provides novel insights into the biocontrol bacteria-mediated tomato immunity to M. incognita that engages with plant miRNAs.

Funder

National Natural Science Foundation of China

Key Research and Development Program of Liaoning Province

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3