Genotype groups of the wheat leaf rust fungus Puccinia triticina in the United States as determined by genotyping by sequencing

Author:

Kolmer James1,Herman Adam2,Fellers John3

Affiliation:

1. USDA-ARS Midwest Area, 57552, Cereal Disease Laboratory, St Paul, Illinois, United States, ;

2. University of Minnesota System, 311816, Supercomputing Institute, Minneapolis, Minnesota, United States;

3. USDA-ARS Plains Area, 57644, Hard Red Winter Wheat Genetics, Manhattan, Kansas, United States;

Abstract

Wheat leaf rust caused by Puccinia triticina, is a widespread disease of wheat in the United States and worldwide. Populations of P. triticina are characterized by virulence phenotypes that change rapidly due to selection by wheat cultivars with leaf rust resistance genes. The objective of this study was to genotype collections of P. triticina from 2011-2018 in the United States, using restriction site associated genotyping by sequencing (GBS), to determine if recently identified new virulence phenotypes belong to established genotype groups or belong to groups previously not detected. A total of 158 isolates were phenotyped for virulence on 20 lines of Thatcher wheat that are isogenic for leaf rust resistance genes and were also genotyped for single nucleotide polymorphism. Eight distinct groups of P. triticina genotypes from common wheat were described based on coancestry, nucleotide divergence, and principal coordinate plots. A separate genotype group had isolates with virulence to durum wheat. Isolates within groups had similar virulence phenotype, and the overall population had high level of heterozygosity and a high level of linkage disequilibria, which were all indicators of clonality. Two new genotype groups were described, raising the possibility of new introductions of P. triticina, although genotypes in these groups may have also originated from somatic nuclear exchange and recombination. A genome wide association study detected 19 SNPs that were highly associated with virulence to 11 resistance genes in the Thatcher near isogenic lines.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3