Molecular Mapping of a Recessive Powdery Mildew Resistance Gene in Wheat Cultivar Tian Xuan 45 Using Bulked Segregant Analysis with Polymorphic Single Nucleotide Polymorphism Relative Ratio Distribution

Author:

Chao Kaixiang12ORCID,Su Wenwen1,Wu Lei1,Su Bei1,Li Qiang1,Wang Baotong1,Ma Dongfang3

Affiliation:

1. State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100 Shaanxi, China;

2. College of Chemistry Biology and Environment, Yuxi Normal University, Yuxi, 653100, Yunnan, China; and

3. Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, 434025 Hubei, China

Abstract

Powdery mildew is a destructive foliar disease of wheat worldwide. Wheat cultivar Tian Xuan 45 exhibits resistance to the highly virulent isolate HY5. Genetic analysis of the F2 and F2:3 populations of a cultivar Ming Xian 169/Tian Xuan 45 cross revealed that the resistance to HY5 was controlled by a single recessive gene, temporarily designated as PmTx45. A Manhattan plot with the relative frequency distribution of single nucleotide polymorphisms (SNPs) was used to rapidly narrow down the possible chromosomal regions of the associated genes. This microarray-based bulked segregant analysis (BSA) largely improved traditional analytical methods. PmTx45 was located in chromosomal bin 4BL5-0.86-1.00 and was flanked by SNP marker AX-110673642 and intron length polymorphism (ILP) marker ILP-4B01G269900 with genetic distances of 3.0 and 2.6 cM, respectively. Molecular detection in a panel of wheat cultivars using the markers linked to PmTx45 showed that the presence of PmTx45 in commercial wheat cultivars was rare. Resistance spectrum and chromosomal position analyses indicated that PmTx45 may be a novel recessive gene with moderate powdery mildew resistance. This new microarray-based BSA method is feasible and effective and has the potential application for mapping genes in wheat in marker-assisted breeding.

Funder

National Key R&D Program of China

Technical Guidance Project of Shaanxi Province

National Science Foundation of China

China Ministry of Education 111 Project

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3