The Identification of Tautoneura mori as the Vector of Mulberry Crinkle Leaf Virus and the Infectivity of Infectious Clones in Mulberry

Author:

Lu Quan-You12ORCID,Ma Yu1,Smith William Kojo1,Yu Jing1,Cheng Yong-Yuan1,Zhang Peng1,Han Tao-Tao1

Affiliation:

1. College of Biotechnology, Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018 Jiangsu, China

2. Key Laboratory of Genetic Improvement of Silkworm and Mulberry, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018 Jiangsu, China

Abstract

Mulberry crinkle leaf virus (MCLV) is a novel geminivirus identified from mulberry. The pathogenicity and natural vector transmission of MCLV remain unknown. Here, infectious clones consisting of the complete tandem dimeric genome of MCLV in a binary vector were constructed and agroinoculated into young mulberry plants. The results showed that the infectious clones of MCLV were systemically infectious in mulberry, but the infected mulberry plants did not show any virus infection-like symptoms. The natural transmission vectors of MCLV were also identified from possible vector insects occurring on the MCLV-infected mulberry plants. The vector ability of Tautoneura mori was identified through an inoculation assay. Three of 21 (14.3%) plants inoculated with T. mori collected from MCLV-infected mulberry plants grown naturally were found to be MCLV-positive 50 days postinoculation. These MCLV-positive mulberry plants did not show any virus infection-like symptoms. Collectively, these results suggest that MCLV is infectious to mulberry plants but, by itself, does not induce infection symptoms. The leafhopper T. mori was experimentally determined to be a transmission vector of MCLV for the first time.

Funder

Doctor Startup Fund Program of the Jiangsu University of Science and Technology

Natural Science Foundation of the Jiangsu Higher Education Institutions of China

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3