Evaluation of the Combined Effect of Heterodera glycines and Macrophomina phaseolina on Soybean Yield in Naturally Infested Fields with Spatial Regression Analysis and in Greenhouse Studies

Author:

Lopez-Nicora H. D.12,Carr J. K.3,Paul P. A.4,Dorrance A. E.4,Ralston T. I.2,Williams C. A.2,Niblack T. L.2ORCID

Affiliation:

1. Departamento de Producción Agrícola, Universidad San Carlos, Alfredo Seiferheld 4989, Asunción, C.P. 1884, Paraguay

2. Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, U.S.A.

3. Department of Geography, The Ohio State University, Columbus, OH 43210, U.S.A.

4. Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691, U.S.A.

Abstract

Heterodera glycines, the soybean cyst nematode, and Macrophomina phaseolina, causal agent of charcoal rot, are economically important soybean pathogens. The impact and effect of these pathogens on soybean yield in coinfested fields in the Midwest production region is not known. Both pathogens are soilborne, with spatially aggregated distribution and effects. Spatial regression analysis, therefore, is an appropriate method to account for the spatial dependency in either the dependent variable or regression error term from data produced in fields naturally infested with H. glycines and M. phaseolina. The objectives of this study were twofold: to evaluate the combined effect of H. glycines and M. phaseolina on soybean yield in naturally infested commercial fields with ordinary least squares and spatial regression models; and to evaluate, under environmentally controlled conditions, the combined effect of H. glycines and M. phaseolina through nematode reproduction and plant tissue fungal colonization. Six trials were conducted in fields naturally infested with H. glycines and M. phaseolina in Ohio. Systematic-grid sampling was used to determine the population densities of H. glycines and M. phaseolina, and soybean yield estimates. Though not used in any statistical analysis, M. phaseolina colony forming units from plant tissue, charcoal rot severity, and H. glycines type were also recorded and summarized. In two greenhouse experiments, treatments consisted of H. glycines alone, M. phaseolina alone, and coinfestation of soybean with both pathogens. Moran’s I test indicated that the yield from five fields was spatially correlated (P < 0.05) and aggregated. In these fields, to account for spatial dependence, spatial regression models were fitted to the data. Spatial regression analyses revealed a significant interaction effect between H. glycines and M. phaseolina on soybean yield for fields with high initial population densities of both pathogens. In the greenhouse experiments, H. glycines reproduction was significantly (P < 0.05) reduced in the presence of M. phaseolina; however, soybean tissue fungal colonization was not affected by the presence of H. glycines. The direct mechanisms by which H. glycines and M. phaseolina interact were not demonstrated in this study. Future studies must be conducted in the field and greenhouse to better understand this interaction effect.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3