Genetic Dissection of T-DNA Insertional Mutants Reveals Uncoupling of Dikaryotic Filamentation and Virulence in Sugarcane Smut Fungus

Author:

Lu Shan1ORCID,Guo Feng2,Wang Zhiqiang1,Shen Xiaorui2,Deng Yizhen3,Meng Jiaorong1,Jiang Zide3,Chen Baoshan14ORCID

Affiliation:

1. State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004 China

2. College of Life Science and Technology, Guangxi University, Nanning, 530004 China

3. Guangdong Province Key Laboratory of Microbial Signals and Disease Control, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Department of Plant Pathology, South China Agricultural University, Guangzhou, 510642 China

4. Ministry & Province co-sponsored Collaborative Innovation Center for Sugarcane and Sugar Industry, Nanning, 530004 China

Abstract

The biotrophic basidiomycetous fungus Sporisorium scitamineum causing smut disease in sugarcane is characterized by a life cycle composed of a yeast-like nonpathogenic haploid basidiosporial stage outside the plant and filamentous pathogenic dikaryotic hyphae within the plant. Under field conditions, dikaryotic hyphae are formed after mating of two opposite mating-type strains. However, the mechanisms underlying genetic regulation of filamentation and its association with pathogenicity and development of teliospores are unclear. This study has focused on the characterization and genetic dissection of haploid filamentous mutants derived from T-DNA insertional mutagenesis. Our results support the existence of at least three genotypes among the six haploid filamentous mutants that differentially contribute to virulence and development of the whip and teliospore, providing a novel foundation for further investigation of the regulatory networks associated with pathogenicity and teliospore development in S. scitamineum.

Funder

Department of Science and Technology of Guangxi Zhuang Autonomous Region

National Natural Science Foundation of China

State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources

National Key Project for Fundamental Science of China

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3