NBS-LRR Gene TaRPS2 is Positively Associated with the High-Temperature Seedling Plant Resistance of Wheat Against Puccinia striiformis f. sp. tritici

Author:

Hu Yangshan1ORCID,Tao Fei12,Su Chang1,Zhang Yue1,Li Juan1,Wang Jiahui1,Xu Xiangming3ORCID,Chen Xianming4ORCID,Shang Hongsheng1,Hu Xiaoping1ORCID

Affiliation:

1. State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China

2. Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, Gansu 730070, China

3. Pest & Pathogen Ecology, NIAB EMR, East Malling, West Malling, Kent ME19 6BJ, U.K.

4. Agricultural Research Service, United States Department of Agriculture and Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, U.S.A.

Abstract

Xiaoyan6 (XY6) is a wheat (Triticum aestivum) cultivar possessing nonrace-specific high-temperature seedling plant (HTSP) resistance against stripe rust, caused by Puccinia striiformis f. sp. tritici. Previously, we identified one particular gene, TaRPS2, for its involvement in the HTSP resistance. To elucidate the role of TaRPS2 in the HTSP resistance, we cloned the full length of TaRPS2 from XY6. The transcriptional expression of TaRPS2 was rapidly upregulated (19.11-fold) under the normal-high-normal temperature treatment that induces the HTSP resistance. The expression level of TaRPS2 in leaves was higher than that in the stems and roots. Quantification of the endogenous hormones in wheat leaves after P. striiformis f. sp. tritici inoculation showed that 1-aminocyclopropane-1-carboxylic acid, salicylic acid (SA), and jasmonic acid were involved in the HTSP resistance. In addition, detection of hydrogen peroxide (H2O2) accumulation indicated that reactive oxygen species burst was also associated with the HTSP resistance. Two hours after exogenous H2O2 treatment or 0.5 h after SA treatment, the expression level of TaRPS2 was increased by 2.66 and 2.35 times, respectively. The subcellular localization of enhanced green fluorescent protein-TaRPS2 fusion protein was in the nuclei and plasma membranes. Virus-induced gene silencing of TaRPS2 reduced the level of HTSP resistance in XY6. Compared with the nonsilenced leaves, the TaRPS2-silenced leaves had the reduction of necrotic cells but a greater number of uredinia. These results indicated that TaRPS2 positively regulates the HTSP resistance of XY6 against P. striiformis f. sp. tritici and is related to the SA and H2O2 signaling pathways.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3