2,4-Diacetylphloroglucinol Alters Plant Root Development

Author:

Brazelton Jessica N.,Pfeufer Emily E.,Sweat Teresa A.,Gardener Brian B. McSpadden,Coenen Catharina

Abstract

Pseudomonas fluorescens isolates containing the phlD gene can protect crops from root pathogens, at least in part through production of the antibiotic 2,4-diacetylphloroglucinol (DAPG). However, the action mechanisms of DAPG are not fully understood, and effects of this antibiotic on host root systems have not been characterized in detail. DAPG inhibited primary root growth and stimulated lateral root production in tomato seedlings. Roots of the auxin-resistant diageotropica mutant of tomato demonstrated reduced DAPG sensitivity with regards to inhibition of primary root growth and induction of root branching. Additionally, applications of exogenous DAPG, at concentrations previously found in the rhizosphere of plants inoculated with DAPG-producing pseudomonads, inhibited the activation of an auxin-inducible GH3 promoter∷luciferase reporter gene construct in transgenic tobacco hypocotyls. In this model system, supernatants of 17 phlD+ P. fluorescens isolates had inhibitory effects on luciferase activity similar to synthetic DAPG. In addition, a phlD mutant strain, unable to produce DAPG, demonstrated delayed inhibitory effects compared with the parent wild-type strain. These results indicate that DAPG can alter crop root architecture by interacting with an auxin-dependent signaling pathway.

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3