Differential Activation of Ammonium Transporters During the Accumulation of Ammonia by Colletotrichum gloeosporioides and Its Effect on Appressoria Formation and Pathogenicity

Author:

Shnaiderman Chen,Miyara Itay,Kobiler Ilana,Sherman Amir,Prusky Dov

Abstract

Ammonium secreted by the post-harvest pathogen Colletotrichum gloeosporioides during host colonization accumulates in the host environment due to enhanced fungal nitrogen metabolism. Two types of ammonium transporter-encoding genes, AMET and MEP, are expressed during pathogenicity. Gene disruption of AMET, a gene modulating ammonia secretion, showed twofold reduced ammonia secretion and 45% less colonization on avocado fruit, suggesting a contribution to pathogenicity. MEPB, a gene modulating ammonium transport, is expressed by C. gloeosporioides during pathogenicity and starvation conditions in culture. Gene disruption of MEPB, the most highly expressed gene of the MEP family, resulted in twofold overexpression of MEPA and MEPC but reduced colonization, suggesting MEPB expression's contribution to pathogenicity. Analysis of internal and external ammonia accumulation by ΔmepB strains in mycelia and germinated spores showed rapid uptake and accumulation, and reduced secretion of ammonia in the mutant versus wild-type (WT) strains. Ammonia uptake by the WT germinating spores but not by the ΔmepB strain with compromised ammonium transport activated cAMP and transcription of PKA subunits PKAR and PKA2. ΔmepB mutants showed 75% less appressorium formation and colonization than the WT, which was partially restored by 10 mM exogenous ammonia. Thus, whereas both AMET and MEPB genes modulate ammonia secretion, only MEPB contributes to ammonia accumulation by mycelia and germinating spores that activate the cAMP pathways, inducing the morphogenetic processes contributing to C. gloeosporioides pathogenicity.

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3