The Melampsora americana population on Salix purpurea in the Great Lakes region is highly diverse with a contributory influence of clonality

Author:

Crowell Chase R1,Wilkerson Dustin G2,Beckauri Mariami1,Cala Ali R1,McMullen Patrick W1,Mondo Stephen3,Andreopoulos William4,Lipzen Anna3,Lail Kathleen3,Yan Mi3,Ng Vivian3,Grigoriev Igor V.3,Smart Lawrence B2,Smart Christine D.1

Affiliation:

1. Cornell University, 5922, Plant Pathology and Plant-microbe Biology, School of Integrative Plant Science, Geneva, New York, United States;

2. Cornell University, 5922, Horticulture Section, School of Integrative Plant Science, Geneva, New York, United States;

3. DOE Joint Genome Institute, 118576, Walnut Creek, California, United States;

4. San Jose State University, 7161, Department of Computer Science, San Jose, California, United States;

Abstract

Shrub willows (Salix spp.) are emerging as a viable lignocellulosic, second-generation bioenergy crop with many growth characteristics favorable for marginal lands in New York State and surrounding areas. Willow rust, caused by members of the genus Melampsora, is the most limiting disease of shrub willow in this region and remains extremely understudied. In this study, genetic diversity, genetic structure, and pathogen clonality were examined in Melampsora americana over two growing seasons using genotyping-by-sequencing to identify single nucleotide polymorphism markers. In conjunction with this project, a reference genome of rust isolate R15-033-03 was generated to aid in variant discovery. Sampling between years allowed for regional and site-specific investigation into population dynamics, in the context of both wild and cultivated hosts within high density plantings. This work revealed that this pathogen is largely panmictic over the sampled areas with few sites showing moderate genetic differentiation. This data supports the hypothesis of sexual recombination between growing seasons as no genotype persisted across the two years of sampling. Additionally, clonality was determined as a driver of pathogen populations within cultivated fields and single shrubs, however there is also evidence of high genetic diversity of rust isolates in all settings. Together, this work provides a framework for M. americana population structure in the Great Lakes region, providing crucial information that can aid in future resistance breeding efforts.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3