Kynurenine 3-Monooxygenase Gene SsCI51640 Is Required for Sporisorium scitamineum Mating/Filamentation by Regulating cAMP Pathway and Improving Sporidia Environmental Adaptability

Author:

Cai Yichang12,Bai Feng1,Chen Jiaoyun12,Li Wenjia12,Bao Han12,Zhang Yi12,Chen Jianwen12,Shen Wankuan123ORCID

Affiliation:

1. College of Agriculture, South China Agricultural University, Guangzhou 510642, P.R. China

2. Sugarcane Research Laboratory, South China Agricultural University, Guangzhou 510642, P.R. China

3. Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Areas, Guangzhou 510642, P.R. China

Abstract

Sugarcane smut is a serious disease caused by Sporisorium scitamineum, which causes significant losses to the sugar industry. It is critical to reveal the molecular pathogenic mechanism of S. scitamineum to explore a new control strategy for sugarcane smut. On the basis of transcriptome sequencing data of two S. scitamineum strains with different pathogenicity, we identified the gene, SsCI51640, which was predicted to encode kynurenine 3-monooxygenase. In this study, we obtained knockout mutants and complementary mutants of this gene and identified gene function. The results showed that the sporidial growth rate and acid production ability of knockout mutants were significantly higher and stronger than those of the wild-type and complementary mutants. The growth of knockout mutants under abiotic stress (osmotic stress and cell wall stress) was significantly inhibited. In addition, the sexual mating ability and pathogenicity of knockout mutants were significantly reduced, while this phenomenon could be restored by adding exogenous cyclic adenosine monophosphate (cAMP). It is thus speculated that the SsCI51640 gene may regulate sexual mating and pathogenicity of S. scitamineum by the cAMP signaling pathway. Moreover, the SsCI51640 gene enhanced the sporidial environmental adaptability, which promoted sexual mating and development of pathogenicity. This study provides a theoretical basis for the molecular pathogenesis of S. scitamineum.

Funder

Earmarked Fund for National Natural Science Foundation of China

Guangdong Provincial Team of Technical System Innovation for Sugarcane Sisal Hemp Industry

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3