Stability of Hybrid Maize Reaction to Gibberella Ear Rot and Deoxynivalenol Contamination of Grain

Author:

Lana F. Dalla1ORCID,Paul P. A.1,Minyo R.2,Thomison P.2,Madden L. V.1ORCID

Affiliation:

1. Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691

2. Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210

Abstract

Trials were conducted to quantify the stability (or lack of G × E interaction) of 15 maize hybrids to Gibberella ear rot (GER; caused by Fusarium graminearum) and deoxynivalenol (DON) contamination of grain across 30 Ohio environments (3 years × 10 locations). In each environment, one plot of each hybrid was planted and 10 ears per plot were inoculated via the silk channel. GER severity (proportion of ear area diseased) and DON contamination of grain (ppm) were quantified. Multiple rank-based methods, including Kendall’s concordance coefficient (W) and Piepho’s U, were used to quantify hybrid stability. The results found insufficient evidence to suggest crossover G × E interaction of ranks, with W greater than zero for GER (W = 0.28) and DON (W = 0.26), and U not statistically significant for either variable (P > 0.20). Linear mixed models (LMMs) were also used to quantify hybrid stability, accounting for crossover or noncrossover G × E interaction of transformed observed data. Based on information criteria and likelihood ratio tests for GER and DON response variables, the models with more complex variance-covariance structures—heterogeneous compound symmetry and factor-analytic—provided a better fit than the model with the simpler compound symmetry structure, indicating that one or more hybrids differed in stability. Overall, hybrids were stable based on rank-based methods, which indicated a lack of crossover G × E interaction, but the LMMs identified a few hybrids that were sensitive to environment. Resistant hybrids were generally more stable than susceptible hybrids.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3