Expression of the Histidine Kinase Gene Sshk Correlates with Dimethachlone Resistance in Sclerotinia sclerotiorum

Author:

Li Jinli1,Zhu Fuxing1,Li Jianhong1ORCID

Affiliation:

1. College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.

Abstract

Histidine kinases (HK) are implicated in virulence, vegetative mycelial growth, and osmotic and oxidative responses in pathogenic fungi. Our previous work showed that transcriptional levels of the group III HK gene Sshk are higher in field dimethachlone-resistant isolates of Sclerotinia sclerotiorum compared with sensitive isolates. However, it is not clear whether the overexpression of Sshk is the major mechanism for resistance to dimethachlone. In this study, we constructed Sshk silencing and overexpression vectors and assessed dimethachlone resistance levels, virulence, mycelial growth, and sensitivity to osmotic stress for the Sshk-silenced and -overexpression transformants. Overexpression of Sshk resulted in resistance to dimethachlone and increased sensitivity to various stresses and to the cell-wall-perturbing agents sodium dodecyl sulfate (SDS) and Congo red (CR). Compared with the parent isolate, Sshk-silenced transformants had reduced resistance to dimethachlone, significantly higher (P < 0.05) mycelial growth and virulence, and lower sclerotium production, and were less sensitive to various exogenous stresses such as sodium chloride. Compared with the parent sensitive isolate HLJMG1, dimethachlone resistance ratios of the three overexpression transformants ∆C101, ∆C21, and ∆C10 increased 168.1-, 189.5-, and 221.2-fold, respectively. The three overexpression transformants were more sensitive to CR and SDS than their parent isolate. These findings suggest that overexpression of Sshk is a major mechanism for dimethachlone resistance in some isolates of S. sclerotiorum, and that Sshk plays an important role in maintaining the integrity of the cell wall. Our findings reveal a novel molecular mechanism for dimethachlone resistance in plant-pathogenic fungi.

Funder

National Natural Science Foundation of China

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3