Identification and Nematicidal Characterization of Proteases Secreted by Endophytic Bacteria Bacillus cereus BCM2

Author:

Hu Haijing1ORCID,Gao Yang23,Li Xia2,Chen Shuanglin2,Yan Shuzhen2,Tian Xinjun14

Affiliation:

1. School of Life Sciences, Nanjing University, Nanjing, 210023, People’s Republic of China

2. Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, School of Life Sciences, Nanjing Normal University, Nanjing, 210046, People’s Republic of China

3. College of Bioscience and Bioengineering, Jiangxi Agriculture University, Nanchang, 330045, People’s Republic of China

4. Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People’s Republic of China

Abstract

The endophytic bacterium Bacillus cereus BCM2 has shown great potential as a biocontrol organism against Meloidogyne incognita, which causes severe root-knot diseases in crops. In our previous study, the metabolite of BCM2 showed high nematicidal activity against the M. incognita second-stage juveniles. However, the mechanism employed by endophytic bacteria to infect and kill nematodes is still unclear. Here, we investigate both the endophytic bacterial extracellular proteins with nematicidal activity and their mechanism of killing nematodes. The first step was detecting the nematicidal activities of crude proteins. The results show that the nematode mortality rate reached 100% within 72 h, and the crude proteins damaged both the cuticle and eggshell, before finally destroying the targets. This suggests possible proteinaceous pathogeny in BCM2. Throughout the process, the fine-detail changes in the nematode cuticle and the intestinal structure were observed using scanning electron microscopy and transmission electron microscopy. These images show that BCM2 extracellular proteins did not damage the internal organization of the nematode but did severely damage its cuticle, which led to content leakage. From the crude proteins, chitosanase, alkaline serine protease, and neutral protease were purified and identified. The M. incognita–B. cereus BCM2 microenvironment simulation demonstrates that BCM2 adheres to the surface of nematodes and helps the metabolites that were produced by BCM2 to rapidly recognize and kill M. incognita. This relationship between plants, endophytic bacteria, and nematodes offers insight into the biological mechanisms that can be utilized for of nematode management.

Funder

State Key Program of National Natural Science Foundation of China

The National Key Research and Development Program of the Ministry of Science and Technology of China

The Sanxin Forestry Project in Jiangsu Province

the specimen platform of China and the teaching specimens subplatform

The Water Conservancy Science and Technology Project of Jiangsu Province

The National Natural Science Foundation of China

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3