Transcriptional Profiling of Diffusible Lipopeptides and Fungal Virulence Genes During Bacillus amyloliquefaciens EZ1509-Mediated Suppression of Sclerotinia sclerotiorum

Author:

Farzand Ayaz12,Moosa Anam2,Zubair Muhammad1,Khan Abdur Rashid1,Ayaz Muhammad1,Massawe Venance Colman1,Gao Xuewen1ORCID

Affiliation:

1. College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Disease and Pest Insects, Ministry of Agriculture, Nanjing 210095, China

2. Department of Plant Pathology, University of Agriculture, Faisalabad, Pakistan

Abstract

Sclerotinia sclerotiorum is a devastating necrotrophic pathogen that infects multiple crops, and its control is an unremitting challenge. In this work, we attempted to gain insights into the pivotal role of lipopeptides (LPs) in the antifungal activity of Bacillus amyloliquefaciens EZ1509. In a comparative study involving five Bacillus strains, B. amyloliquefaciens EZ1509 harboring four LPs biosynthetic genes (viz. surfactin, iturin, fengycin, and bacilysin) exhibited promising antifungal activity against S. sclerotiorum in a dual-culture assay. Our data demonstrated a remarkable upsurge in LPs biosynthetic gene expression through quantitative reverse transcription PCR during in vitro interaction assay with S. sclerotiorum. Maximum upregulation in LPs biosynthetic genes was observed on the second and third days of in vitro interaction, with iturin and fengycin being the highly expressed genes. Subsequently, Matrix-assisted laser desorption/ionization-time of flight-mass spectrometry analysis confirmed the presence of LPs in the inhibition zone. Scanning electron microscope analysis showed disintegration, shrinkage, plasmolysis, and breakdown of fungal hyphae. During in planta evaluation, S. sclerotiorum previously challenged with EZ1509 showed significant suppression in pathogenicity on detached leaves of tobacco and rapeseed. The oxalic acid synthesis was also significantly reduced in S. sclerotiorum previously confronted with antagonistic bacterium. The expression of major virulence genes of S. sclerotiorum, including endopolygalacturonase-3, oxalic acid hydrolase, and endopolygalacturonase-6, was significantly downregulated during in vitro confrontation with EZ1509.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Jiangsu Independent Innovation Fund for Agricultural Science and Technology

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3