Affiliation:
1. State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, P.R. China
Abstract
Southern blight caused by Sclerotium delphinii has a devastating effect on Dendrobium catenatum (an extremely valuable medicinal and food homologous Orchidaceae plant). However, the mechanisms underlying S. delphinii infection and D. catenatum response are far from known. Here, we investigated the infection process and mode of S. delphinii through microscopic observations of detached leaves and living plantlets and further explored the hormonal and metabolomic responses of D. catenatum during S. delphinii infection by using the widely targeted metabolome method. The results showed that S. delphinii infection involves two stages: a contact phase (12 to 16 h after inoculation) and a penetration stage (20 h after inoculation). S. delphinii hyphae could penetrate leaves directly (via swollen hyphae and the formation of an infection cushion) or indirectly (via stomatal penetration), causing water-soaked lesions on leaves within 24 to 28 h after inoculation and expanded thereafter. The content of jasmonates increased after the hyphal contact and remained at high levels during S. delphinii infection, whereas the ethylene precursor (1-aminocyclopropanecarboxylic acid) accumulated significantly after penetration. Furthermore, metabolites of the phenylpropanoid and flavonoid pathways were enriched after pathogen penetration, whereas several amino acids accumulated in significant amounts at the late stage of infection. Moreover, some other associated metabolites were significantly altered during pathogen infection. Therefore, the jasmonate, phenylpropanoid, flavonoid, and amino acid pathways could play crucial roles in D. catenatum resistance to S. delphinii infection. This study provides insight into the prevention and control of southern blight disease of D. catenatum.
Funder
Major Science and Technology Projects of Breeding New Varieties of Agriculture in Zhejiang Province
Major Science and Technology Projects of Yunnan Province
Subject
Plant Science,Agronomy and Crop Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献