Identification and Characterization of a Potential Candidate Mlo Gene Conferring Susceptibility to Powdery Mildew in Rubber Tree

Author:

Qin Bi1,Wang Meng2,He Hai-xia2,Xiao Hua-xing2,Zhang Yu2,Wang Li-feng1ORCID

Affiliation:

1. Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China; and

2. Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China

Abstract

Mildew resistance locus O (Mlo) gene was first found in barley as a powdery mildew susceptibility gene, and recessive mlo alleles confer durable resistance to barley powdery mildew. To identify candidate Mlo susceptibility genes in rubber tree, HbMlo12 was cloned from rubber tree clone CATAS7-33-97, which is susceptible to powdery mildew. Protein architecture analysis showed that HbMlo12 was a typical Mlo protein with seven transmembrane domains. Protein blast search in the Arabidopsis thaliana proteome database showed that HbMlo12 shared the highest similarity with AtMlo12, with 63% sequence identity. Furthermore, HbMlo12 together with the dicot powdery mildew susceptible Mlo proteins (including AtMlo2, AtMlo6, AtMlo12, tomato SlMlo1, pepper CaMlo2, pea PsMlo1, etc.) were grouped into clade V. Subcellular localization analysis in tobacco epidermal cells revealed that HbMlo12 was localized to the endoplasmic reticulum membrane. HbMlo12 was preferentially expressed in the flower and leaf of rubber tree. Moreover, its expression was significantly upregulated in response to powdery mildew inoculation. Application of exogenous ethephon caused a distinct increase in HbMlo12 expression. Additionally, HbMlo12 transcript was quickly induced by spraying salicylic acid and gibberellic acid and reached the maximum at 0.5 h after treatments. By contrast, HbMlo12 expression was downregulated by methyl jasmonate, abscisic acid, and drought stress treatments. There was no significant change in HbMlo12 expression after indole-3-acetic acid, H2O2, and wounding stimuli. Taken together, these results suggested that HbMlo12 might be a candidate Mlo gene conferring susceptibility to powdery mildew in rubber tree. The results of this study are vital in understanding Mlo gene evolution and developing new rubber tree varieties with powdery mildew resistance using reverse genetics.

Funder

National Science Foundation of China

China Agriculture Research System

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3