Forecasting Risk of Crop Disease with Anomaly Detection Algorithms

Author:

Skelsey Peter1ORCID

Affiliation:

1. Information and Computational Sciences, James Hutton Institute, Dundee, United Kingdom

Abstract

Information from crop disease surveillance programs and outbreak investigations provides real-world data about the drivers of epidemics. In many cases, however, only information on outbreaks is collected and data from surrounding healthy crops are omitted. Use of such data to develop models that can forecast risk/no risk of disease is therefore problematic, as information relating to the no-risk status of healthy crops is missing. This study explored a novel application of anomaly detection techniques to derive models for forecasting risk of crop disease from data composed of outbreaks only. This was done in two steps. In the training phase, the algorithms were used to learn the envelope of weather conditions most associated with historic crop disease outbreaks. In the testing phase, the algorithms were used for hindcasting of historic outbreak events. Five different anomaly detection algorithms were compared according to their accuracy in forecasting outbreaks: robust covariance, one-class k-means, Gaussian mixture model, kernel density estimation, and one-class support vector machine. A case study of potato late blight survey data from across Great Britain was used for proof of concept. The results showed that Gaussian mixture model had the highest forecast accuracy at 97.0%, followed by one-class k-means at 96.9%. There was added value in combining the algorithms in an ensemble to provide a more accurate and robust forecasting tool that can be tailored to produce region-specific alerts. The techniques used here can easily be applied to outbreak data from other crop pathosystems to derive tools for agricultural decision support.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3