Investigation of Fungi Causing Twig Blight Diseases on Peach Trees in South Carolina

Author:

Froelich Martha H.1,Schnabel Guido1ORCID

Affiliation:

1. Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634

Abstract

A survey of fungal pathogens causing twig blight on commercial peach trees was conducted in South Carolina in the fall of 2016. Shoots with cankers, pycnidia, and dieback were collected from six locations around the state. Isolates obtained from these samples were identified as Botryosphaeria obtusa, Phomopsis amygdali, Leucostoma persoonii, and Cytospora sp., based on colony morphology, conidia size and shape, and ribosomal DNA sequence analysis. L. persoonii was the most prevalent species and was isolated in five of the six locations, followed by P. amygdali and B. obtusa. The sensitivity of representative isolates of B. obtusa, P. amygdali, and L. persoonii to fungicides of different FRAC codes was evaluated. All species tested were sensitive to thiophanate-methyl (FRAC 1) and pyraclostrobin and azoxystrobin (both FRAC 11), whereas all species were resistant to boscalid and fluopyram (both FRAC 7). P. amygdali and B. obtusa were sensitive to difenoconazole and propiconazole (both FRAC 3), whereas L. persoonii was moderately resistant. L. persoonii was the most virulent species based on expansion of mycelium in the cambium layer of 2-year-old, detached twig pieces. Bacterial spot (BS)-sensitive cultivar ‘O’Henry’ was most susceptible to B. obtusa compared with BS-sensitive ‘Summerprince’, brown rot (BR)-resistant ‘Contender’, and BR-sensitive ‘Coronet’ but was least susceptible to L. persoonii. Coronet was most susceptible to L. persoonii. There were no significant differences between susceptibility of the cultivars to P. amygdali. This study established that L. persoonii is currently the most frequent twig blight pathogen in South Carolina, perhaps owing to its superior fitness. Some fungicides were effective in controlling all twig blight pathogens and may therefore be useful for chemical management strategies. Our study also provides the first evidence that the genetic basis of resistance to BS and BR in peach trees is not necessarily linked to tolerance to wood pathogens.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3