Identification and Characterization of Rhizoctonia Species Associated with Soybean Seedling Disease

Author:

Ajayi-Oyetunde Olutoyosi O.1,Bradley Carl A.1

Affiliation:

1. Department of Crop Sciences, University of Illinois, Urbana 61801

Abstract

In an effort to identify the Rhizoctonia spp. associated with seedling diseases of soybean, Rhizoctonia isolates were recovered from soybean seedlings with damping off and root and hypocotyl rot symptoms from Arkansas, Illinois, Kansas, Michigan, Minnesota, and the Canadian province of Ontario between 2012 and 2014. Based on cultural morphology, polymerase chain reaction restriction fragment length polymorphism, and phylogenetic analysis of the internal transcribed spacer (ITS) region of the ribosomal RNA genes, 80 isolates were confirmed to be Rhizoctonia solani, 24 were binucleate Rhizoctonia spp., and 10 were R. zeae. Of the 80 R. solani isolates, one belonged to anastomosis group (AG) 2-1, 52 belonged to AG-2-2IIIB, five belonged to AG-3 PT, three belonged to AG-4 HGI, two belonged to AG-4 HGIII, nine belonged to AG-7, and eight belonged to AG-11. Bayesian inference of phylogeny using the ITS region revealed two clades of R. solani AG-7 that possibly correspond to different AG-7 subgroups. Phylogenetic analysis also provided evidence for genetic relatedness between certain binucleate Rhizoctonia and some R. solani isolates. On ‘Williams 82’ soybean, isolates of AG-2-2IIIB were the most aggressive, followed by isolates of AG-7, AG-4, and AG-11. On ‘Jubilee’, a sweet corn cultivar, AG-2-2IIIB and AG-4 isolates caused significant stunting and root damage, whereas the damage caused by the AG-11 isolates was mostly restricted to the mesocotyl. Isolates of R. zeae and the binucleate Rhizoctonia spp. were not pathogenic on soybean or corn. Our results indicate that soybean and corn are hosts to the predominant and aggressive AG of R. solani, implying that rotation between these two crops may not be an effective management practice.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3