Relative Host Resistance to Black Spot Disease in Field Pea (Pisum sativum) is Determined by Individual Pathogens

Author:

Tran Hieu Sy1,You Ming Pei1,Khan Tanveer N.2,Barbetti Martin J.3

Affiliation:

1. School of Plant Biology and UWA Institute of Agriculture, Faculty of Science, The University of Western Australia, Crawley, WA 6009, Australia

2. The UWA Institute of Agriculture, Faculty of Science, The University of Western Australia, Crawley, WA 6009, Australia

3. School of Plant Biology and UWA Institute of Agriculture, Faculty of Science, The University of Western Australia, Crawley WA, 6009, Australia

Abstract

Black spot, also known as Ascochyta blight, is the most important disease on field pea (Pisum sativum). It is caused by a complex of pathogens, the most important of which in Australia include Didymella pinodes, Phoma pinodella, and P. koolunga. The relative proportions of these and other component pathogens of the complex fluctuate widely across time and geographic locations in Australia, limiting the ability of breeders to develop varieties with effective resistance to black spot. To address this, 40 field pea genotypes were tested under controlled environment conditions for their individual stem and leaf responses against these three pathogens. Disease severity was calculated as area under disease progress curve (AUDPC), and subsequently converted to mean rank (MR). The overall rank (OR) for each pathogen was used to compare response of genotypes under inoculation with each pathogen. The expressions of host resistance across the field pea genotypes were largely dependent upon the individual test pathogen and whether the test was on stem or leaf. Overall, P. koolunga caused most severe stem disease; significantly more severe than either D. pinodes or P. pinodella. This is the first report of the host resistance identified in field pea to P. koolunga; the five genotypes showing highest resistance on stem, viz. 05P778-BSR-701, ATC 5338, ATC 5345, Dundale, and ATC 866, had AUDPC MR values <250.4, while the AUDPC MR values of the 19 genotypes showing the best resistance on leaf was less than 296.8. Two genotypes, ATC 866 and Dundale, showed resistance against P. koolunga on both stem and leaf. Against D. pinodes, the four and 16 most resistant genotypes on stem and leaf had AUDPC MR values <111.2 and <136.6, respectively, with four genotypes showing resistance on both stem and leaf including 05P770-BSR-705, Austrian Winter Pea, 06P822-(F5)-BSR-6, and 98107-62E. Against P. pinodella, four and eight genotypes showing the best resistance on stem and leaf had AUDPC MR values <81.3 and <221.9, respectively; three genotypes, viz. 98107-62E, Dundale, and Austrian Winter Pea showed combined resistance on stem and leaf. A few genotypes identified with resistance against two major pathogens of the complex will be of particular significance to breeding programs. These findings explain why field pea varieties arising from breeding programs in Australia fail to display the level or consistency of resistance required against black spot and why there needs to be a wider focus than D. pinodes in breeding programs.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3