The In Vitro and In Planta Interspecies Interactions Among Rice-Pathogenic Burkholderia Species

Author:

Kim Namgyu12,Mannaa Mohamed12,Kim Juyun12,Ra Ji-Eun3,Kim Sang-Min3,Lee Chaeyeong12,Lee Hyun-Hee12,Seo Young-Su12ORCID

Affiliation:

1. Department of Microbiology, Pusan National University, Busan 46241, Korea

2. Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea

3. Crop Foundation Division, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Korea

Abstract

Burkholderia glumae, B. plantarii, and B. gladioli are responsible for serious diseases in rice crops and co-occurrence among them has been reported. In this study, in vitro assays revealed antagonistic activity among these organisms, with B. gladioli demonstrating strong inhibition of B. glumae and B. plantarii. Strains of B. glumae and B. plantarii that express green fluorescent protein were constructed and used for cocultivation assays with B. gladioli, which confirmed the strong inhibitory activity of B. gladioli. Cell-free supernatants from each species were tested against cultures of counterpart species to evaluate the potential to inhibit bacterial growth. To investigate the inhibitory activity of B. gladioli on B. glumae and B. plantarii in rice, rice plant assays were performed and quantitative PCR (qPCR) assays were developed for in planta bacterial quantification. The results indicated that coinoculation with B. gladioli leads to significantly reduced disease severity and colonization of rice tissues compared with single inoculation with B. glumae or B. plantarii. This study demonstrates the interactions among three rice-pathogenic Burkholderia species and strong antagonistic activity of B. gladioli in vitro and in planta. The qPCR assays developed here could be applied for accurate quantification of these organisms from in planta samples in future studies.

Funder

Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education

Strategic Initiative for Microbiomes in Agriculture and Food, Ministry of Agriculture, Food and Rural Affairs, Republic of Korea

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3