First Report of Tobacco Mosaic Virus Infecting Bidens pilosa in China

Author:

Chen Peng1,Lan Pingxiu2,Li Fan3

Affiliation:

1. State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China;

2. Yunnan Agricultural University, Key Laboratory of Agricultural Biodiversity for Pest Management of China Education Ministry, Kunming, Yunnan, China;

3. Key Laboratory of Agricultural Biodiversity for Pest Management of China Education Ministry, Plant Protection, Key Laboratory of Agricultural Biodiversity for Pest Management of China Education Ministry, Yunnan Agricultural University, Kunming 650201, China, Kunming, China, 650201;

Abstract

Bidens pilosa is an annual weed in family Asteraceae widely distributed in tropical and subtropical regions worldwide. It is also a natural host for at least five viruses including tomato spotted wilt orthotospovirus, tomato zonate spot orthotospovirus, pepper chlorotic spot orthotospovirus, Bidens mottle virus and Bidens mosaic virus, and therefore serve as a virus reservoir for various field crops (Yin et al. 2013; Xu et al. 2022; Wang et al. 2009). In August 2021, plants of B. pilosa displaying symptoms of chlorosis, mosaic and necrosis were observed surrounding a tobacco field in Kunming, Yunnan Province, China. Leaf samples were collected from four diseased B. pilosa plants and total nucleic acids were extracted using a CTAB based method (Li, R., et al. 2008). RT-PCR was carried out using virus-specific primers designed for the aforementioned five viruses as well as tobacco mosaic virus (TMV). The results indicated that none of the four samples tested positive for the 5 viruses, excepted for one sample, which produced an amplicon of the expected size (700 bp) with the TMV-specific primer pair of TMVF (CGGTCAGTGCCGAACAAGAA) and TMVR (TACGTGCCTGCGGATGTATATG). Cloning and sequencing the amplicon revealed a 717 nt fragment (accession no. OR136480) in the core cp region of TMV, showed the highest nt sequence identity of 99.6% with other TMV isolates (HE818450) in GenBank. TMV infection was also verified by dot-enzyme linked immunosorbent assay (DOT-ELISA) using antisera of TMV (Beijing Green Castle Agricultural Technology Co., Ltd.). To further confirm the TMV infection in B. pilosa plants, a TMV infectious clone (kindly provided by Dr. Fei Yan at Ningbo University, China) was inoculated into twelve healthy 3-week-old B. pilosa seedlings using Agrobacterium-mediated delivery. None of the inoculated B. pilosa plants exhibited distinct symptoms even at 30 days post-inoculation (dpi). Nevertheless, RT-PCR and Sanger sequencing results revealed that 2 of the inoculated B. pilosa plants were infected by TMV. The above results collectively indicate that TMV can infect B. pilosa under both natural and artificial conditions. However, it is possible that the symptoms observed on the diseased B. pilosa plants in the field may not be solely attributed to TMV but rather to the co-infection of TMV with other unidentified virus(es), which were not characterized in this study. TMV is considered one of the economically significant pathogens affecting crops such as tobacco (Nicotiana tabacum), pepper (Capsicum spp.), and tomato (Solanum lycopersicum). It is highly contagious and can be transmitted through various means, including seeds, soil and agricultural practice. B. pilosa is considered one of the most significant alien invasive weeds in China, mainly owing to its robust reproductive capacity. Furthermore, B. pilosa has the potential to act as a reservoir for various viruses that may affect field crops. The presence of TMV on B. pilosa plants may enhance the transmission efficiency of the virus in the field. Although TMV does not induce noticeable symptoms in B. pilosa, its presence on these plants could potentially increase the transmission efficiency of the virus in the field, posing a significant risk to field crops. Therefore, effective weed management and the diligent monitoring of TMV in B. pilosa should be recognized as essential sanitary practices for controlling viral diseases in field crops. To the best of our knowledge, this is the first report of TMV infecting B. pilosa in China.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3