First report of Melon chlorotic spot virus in cultivated sorrel (Rumex acetosa) in Belgium

Author:

Temple Coline12,Blouin Arnaud G.3,Fontdevila Núria4,Steyer Stéphan5,Massart Sebastien6

Affiliation:

1. University of Liege Faculty of Gembloux Agro-Bio Tech, 82209, Integrated and Urban Plant Pathology Laboratory, Av. Maréchal Juin 13, Bât 47, porte 4, Gembloux, Belgium, 5030

2. University of Liege Faculty of Gembloux Agro-Bio Tech, 82209, Integrated and Urban Plant Pathology Laboratory, Av. Maréchal Juin 13, Bât 47, porte 4, Gembloux, Belgium, 5030;

3. Agroscope Location Changins, 54161, Virology, Route de Duillier 50, Nyon, Switzerland, 1260;

4. Av. Maréchal Juin 13, Bât 47, porte 4Gembloux, Belgium, 5030;

5. Centre wallon de Recherches agronomiques, 105048, Crops & Forest Health, Gembloux, Belgium;

6. Gembloux Agro-Bio Tech, University of Liège Gembloux, Plant Pathology Laboratory, Passage des deportes, 2, Gembloux, Belgium, 5030;

Abstract

In 2020, symptoms of putative viral origin were observed on 7% of tomatoes in an organic vegetable farm in Belgium (deformed uneven ripened fruits, vein clearing, mosaic and purple leaves, stunted plants). The leaves of twenty symptomatic plants were collected, pooled and screened for viruses using high throughput sequencing technologies (HTS) on Illumina NextSeq500 following a virion-associated nucleic acid (VANA) protocol (Temple et al., 2021, Be_SL1). In total, 3,665,498 reads (PE150) were generated. Bioinformatic analyses (denovo assembly, tblastx search on NCBI and mapping) using Geneious Prime® 2020.1.2 revealed the presence of three viruses known to infect tomatoes: Physostegia chlorotic mottle virus (PhCMoV), 547,142 reads map on NC_055466, potato virus Y (PVY), 4056 reads map on MW595184, and melon chlorotic spot virus (MeCSV), 55 reads mapped to six out of the eight different MeCSV segments (NC_040448-55). Tomato plants have already been artificially inoculated by MeCSV (Lecoq et al., 2019) but this detection (confirmed by independent RT-PCR on the pooled sample) is the first one in natural condition on farm. The high prevalence of symptoms triggered the research of alternative perennial hosts that can serve as a reservoir during inter-cropping season. One plant of Rumex acetosa showing vein clearing (CT-122) was collected in the same greenhouse the year after. Total RNA was extracted, followed by ribodepletion, and Illumina HTS using the protocol described in Temple et al., (2021) for Be_GP1. In total, 4,549,721 PE150 reads were obtained and bioinformatic analyses confirmed the presence of MeCSV (8,816 reads mapped on eight RNA segments NC_040448-55 with an average 96,52% coverage of the reference sequences, supplementary table 1) and suggested the presence of an unclassified partitivirus. Consensus sequences were extracted for each segment of MeCSV (OQ818038-45) and showed between 83% and 87% of nucleotide identity with the reference sequences NC_040448-55. RNA1 segment was used to design MeCSV-specific RT-PCR primers for detection (MeCSV-125F 5’-TTTAAGGCCAGATCCAGAGGTTC-3’/ MeCSV-498R 5’-TGGATGTGACAACCTGGTAGTAC-3’). Thereafter, in July 2022, 42 R. acetosa plants were collected in the same greenhouse. Among them, seven plants showed vein clearing, two showed yellowing with necrosis, two exhibited yellowing and vein clearing (Supplementary figure 1), and one showed mosaic. The 42 plants were subjected to RNA extraction and RT-PCR for MeCSV (Supplementary figure 2) and PhCMoV detection. MeCSV was detected in 13 plants (two asymptomatic plants and all the symptomatic plants except the one exhibiting mosaic where PhCMoV was detected). PhCMoV was also detected in three plants with vein clearing, one with yellowing and one of the two asymptomatic plants infected by MeCSV. Our results report the first detection of MeCSV in R. acetosa and the first detection of MeCSV in Belgium. In addition, according to the hierarchical approach for assessing causal relationships in plant virology (Fox et al., 2020), a preliminary association was observed between symptoms and MeCSV detection [6% prevalence on asymptomatic plants and 92% prevalence on diseased plants (from which seven symptomatic samples were not co-infected by PhCMoV)]. Symptom causality should be further investigated but this results are important for disease management because they suggested that cultivated perennial R. acetosa may serve as a reservoir for two emergent plant viruses (PhCMoV and MeCSV) (Lecoq et al., 2019, Temple et al., 2021).

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3