Recent Emergence of the Mild Strain of Tomato yellow leaf curl virus as a Cause of Tomato Yellow Leaf Curl Disease of Processing Tomatoes (Solanum lycopersicon) in the Dominican Republic

Author:

Kon T.1,Melgarejo T.1,Almanzar A.2,Gilbertson R. L.1

Affiliation:

1. Department of Plant Pathology, University of California, Davis 95616

2. Transagricola, S. A. Av. Duarte 269 Navarette, Santiago, Dominican Republic Apartado 713

Abstract

In the early 1990s, the monopartite begomovirus Tomato yellow leaf curl virus (TYLCV) was introduced into the Dominican Republic (DO), and molecular characterization revealed it was an isolate of TYLCV-Israel (TYLCV-IL[DO]) (3,5). In 2006, a study of the variability of TYLCV in DO revealed that TYLCV-IL[DO] was associated with all samples of tomato yellow leaf curl (TYLC) tested and, thus, that the virus had been genetically stable for >15 years (2). However, in 2010 and 2011, 2 of 10 and 11 of 18 samples of TYLC, respectively, were negative for TYLCV infection based upon PCR with the TYLCV-specific primer pair, 2560v (5′-GAGAACAATTGGGATATG-3′)/1480c (5′-AATCATGGATTCACGCAC-3′), which directs the amplification of a ~1.7 kb fragment. In 2011, two such samples from the Azua Valley were tested by PCR with the 1470v (5′-AGTGATGAGTTCCCCTGTGC-3′)/UPC2 primer pair (1), and sequence analysis of the ~0.4 kb fragment amplified from both samples revealed infection with the mild strain of TYLCV (TYLCV-Mld). A primer specific for TYLCV-Mld was designed (2070v, 5′-AAACGGAGAAATATATAAGGAGCC-3′), and PCR with the 2070v/1480c primer pair directed the amplification of the expected ~2.1 kb fragment from all 11 TYLC samples collected in 2011 that were PCR-negative for TYLCV-IL[DO] infection. Sequence analyses confirmed these were TYLCV-Mld fragments. The complete TYLCV-Mld genome was amplified from two samples from the Azua Valley with Templiphi, the amplified DNA products digested with Sal I, and the resulting ~2.8 kb fragments ligated into Sal I-digested pGEM-11. The complete sequences of these isolates were 2,791 nt and 99% identical to each other and 98% identical to sequences of TYLCV-Mld isolates. The TYLCV-Mld isolates from the DO were designated TYLCV-Mld:DO:TY5:01:2011 (KJ913682) and TYLCV-Mld:DO:TY5:02:2011 (KJ913683). A multimeric clone of TYLCV-Mld:DO:TY5:01:2011 was generated in the binary vector pCAMBIA1300 by cloning a 2.2 kb Sal I-EcoRI fragment containing the intergenic region to generate a 0.8-mer (pCTYMld0.8), and then the full-length Sal I fragment was cloned into the Sal I site of pCTYMld0.8 to generate a 1.8-mer (pCTYMldDO-01-1.8). Tomato plants agroinoculated with Agrobacterium tumefaciens carrying pCTYMldDO-01-1.8 developed severe TYLC disease symptoms 10 to 14 days after inoculation, whereas plants inoculated with a strain carrying the empty vector did not develop symptoms. Samples of processing tomatoes with TYLC were collected in 2012 to 2014 in the DO and tested for TYLCV-IL[DO] and TYLCV-Mld by PCR with the 2560v/1480c and 2070v/1480c primers pairs, respectively; these samples had infections of 93% (13/14), 86% (18/21), and 61% (11/18) with TYLCV-Mld; 29% (4/14), 19% (4/21), and 56% (10/18) with TYLCV-IL[DO]; and 21% (3/14), 5% (1/21), and 28% (5/18) with both viruses, respectively. These results reveal that there has been a striking population shift in the begomovirus causing TYLC in the DO, with TYLCV-Mld becoming predominant. This may reflect selection pressure(s) favoring a small pre-existing population of TYLCV-Mld, such as new tomato varieties, or a recent introduction event, such as that described in Venezuela (4). References: (1) R. W. Briddon and P. G. Markham. Mol. Biotechnol. 1:202, 1994. (2) R. L. Gilbertson et al. Page 279 in: Tomato yellow leaf curl virus disease. Springer, 2007. (3) M. K. Nahkla et al. Plant Dis. 78:926, 1994. (4) G. Romay et al. Australasian Plant Dis. Notes, in press, 2014. (5) R. Salati et al. Phytopathology 92:487, 2002.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Innovative Approaches in Tomato Leaf Disease Recognition using Deep Learning;2023 6th International Conference on Recent Trends in Advance Computing (ICRTAC);2023-12-14

2. Virus Diseases of Tropical Vegetable Crops and Their Management;Integrated Pest Management of Tropical Vegetable Crops;2016

3. Occurrence of Six Begomoviruses Infecting Tomato Fields in Venezuela and Genetic Characterization of Potato Yellow Mosaic Virus Isolates;Journal of Phytopathology;2015-08-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3