Potential Impact of Fluopyram on the Frequency of the D123E Mutation in Alternaria solani

Author:

Bauske Mitchell J.1,Yellareddygari S. K. R.1,Gudmestad Neil C.1

Affiliation:

1. Department of Plant Pathology, North Dakota State University, Fargo 58105

Abstract

Succinate dehydrogenase-inhibiting (SDHI) fungicides have been widely applied in commercial potato (Solanum tuberosum L.) fields for the control of early blight, caused by Alternaria solani Sorauer. Five-point mutations on three AsSdh genes in A. solani have been identified as conferring resistance to SDHI fungicides. Recent work in our laboratory determined that A. solani isolates possessing the D123E mutation, or the substitution of aspartic acid for glutamic acid at position 123 in the AsSdhD gene, were collected at successively higher frequencies throughout a 3-year survey. In total, 118 A. solani isolates previously characterized as possessing the D123E mutation were evaluated in vitro for boscalid and fluopyram sensitivity. Over 80% of A. solani isolates with the D123E mutation evaluated were determined to be highly resistant to boscalid in vitro. However, effective concentration at which the fungal growth is inhibited by 50% values of isolates with the D123E mutation to fluopyram, ranging from 0.2 to 3 µg/ml, were sensitive and only slightly higher than those of baseline isolates to fluopyram, which ranged from 0.1 to 0.6 µg/ml. Five A. solani isolates with the D123E mutation were further evaluated in vivo for percent disease control obtained from boscalid and fluopyram compared with two wild-type isolates, three isolates possessing the F129L mutation, two isolates possessing the H134R mutation, two isolates possessing the H133R mutation, and one isolate with the H278R mutation. Relative area under the dose response curve values for boscalid and fluopyram were significantly lower for all five D123E-mutant isolates, demonstrating reduced disease control in vivo. In field trials, the frequency of A. solani isolates with the D123E mutation recovered from treatments receiving an in-furrow application of fluopyram ranged from 5 to 37%, which was significantly higher compared with treatments receiving foliar applications of standard protectants, in which the frequency of the D123E mutation in isolates ranged from 0 to 2.5%. Results suggest that A. solani isolates possessing the D123E mutation have a selective advantage under the application of fluopyram compared with SDHI-sensitive isolates, as well as isolates possessing other mutations conferring SDHI resistance. These data illustrate the importance of implementing fungicide resistance management strategies and cautions the use of fluopyram for in-furrow applications that target other pathogens of potato.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3