Dopamine enhances the resistance of apple to Valsa mali infection

Author:

Liu Xiaomin1,Yuan Xiao2,Zhang Zhijun2,Wang Yanpeng2,Ma Fengwang3,Li Chao4

Affiliation:

1. Northwest A&F University, 12469, College of horticulture, Yangling, Shaanxi Province, China, Yangling, China, 712100;

2. Northwest A&F University, 12469, College of horticulture, Yangling, China;

3. Northwest A&F University, 12469, Yangling, Shaanxi Province, China, Yangling, China, 712100;

4. Northwest A&F University, 12469, College of horticulture, Yangling, China, ;

Abstract

Apple Valsa canker is considered one of the most serious apple diseases. Dopamine is a catecholamine with key physiological functions in plants. Tyrosine decarboxylase (TYDC) is not only involved in the synthesis of dopamine in plants but may also play an important role in the resistance of plants to pathogen infection. In this study, we show that 100 μM exogenous dopamine application and MdTYDC (Malus domestica TYDC) overexpression (OE) enhances the resistance of apple to V. mali (Valsa mali) infection, likely because the increased dopamine content reduces the accumulation of H2O2 and increases the accumulation of phenolic compounds and salicylic acid (SA) in dopamine-treated and OE apple plants. The activity of chitinase and β-1, 3-glucanase and the expression of SA-related genes were induced more strongly by V. mali in dopamine-treated and OE apples. The dopamine content was significantly higher in dopamine-treated and OE apples than in their respective controls under both normal and inoculated conditions (P < 0.05). Overall, these findings indicate that the application of exogenous dopamine and the overexpression of MdTYDC may enhance the resistance of apples to V. mali infection by altering the dopamine content, which improves antioxidant capacity, promotes the accumulation of phenolic compounds and SA, and enhances the activity of disease resistance-related proteins.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3